595 research outputs found
Building Networks from the Outside In: Japanese NGOs and the Kyoto Climate Change Conference
This chapter looks at changing patterns of Japanese environmental NGOs active in the international sphere and argues that in the early 1990s changes in the international realm provided activists new opportunities and frameworks that allowed them to overcome steep domestic organizational barriers and participate in new activities focused on global environmental issues. Building upon recent work done by sociologists and political scientists, it outlines how international opportunity, transational diffusion, and international socialization of state actors have encouraged the growth of NGOs and new forms of social action
Up to No Good? Recent Critics and Critiques of NGOs
This chapter examines the various criticisms of NGOs and calls attention to both the validity of these criticisms as well as contradictions and inconsistencies. Critics of NGOs can be found across the political spectrum, ranging from rightists who object to NGOs in principle to leftists who criticize NGOs for their failures to advance a progressive agenda or for deferring to government preferences. Despite their ideological differences and ultimate objectives, however, critics are remarkably similar in terms of many of their main complaints about NGOs. During the course of the 1990s and early 2000s, a clearly defined set of critiques of NGOs have appeared focusing on: (1) their performance and actual effectiveness, (2) accountability issues, (3) issues of autonomy, (4) commercialization, and (5) ideological and/or political interpretations of their rising influence. Now appearing with increasing regularity and frequency in the academic literature, the policy world, and the popular press, these critiques have been directed towards not only NGOs working in the area of conflict resolution (the main subject of this book), but to all NGOs: advocacy NGOs, service NGOs, and NGOs working in various issues areas. In order to provide both a comprehensive and a refined examination of the debate, this chapter will present the major criticisms of NGOs in general, while distinguishing critiques as they apply to various types of NGOs
Correlation energy and spin polarization in the 2D electron gas
The ground state energy of the two--dimensional uniform electron gas has been
calculated with fixed--node diffusion Monte Carlo, including backflow
correlations, for a wide range of electron densities as a function of spin
polarization. We give a simple analytic representation of the correlation
energy which fits the density and polarization dependence of the simulation
data and includes several known high- and low-density limits. This
parametrization provides a reliable local spin density energy functional for
two-dimensional systems and an estimate for the spin susceptibility. Within the
proposed model for the correlation energy, a weakly first--order polarization
transition occurs shortly before Wigner crystallization as the density is
lowered.Comment: Minor typos corrected, see erratum: Phys. Rev. Lett. 91, 109902(E)
(2003
The role of biases in on-line learning of two-layer networks
The influence of biases on the learning dynamics of a two-layer neural network, a normalized soft-committee machine, is studied for on-line gradient descent learning. Within a statistical mechanics framework, numerical studies show that the inclusion of adjustable biases dramatically alters the learning dynamics found previously. The symmetric phase which has often been predominant in the original model all but disappears for a non-degenerate bias task. The extended model furthermore exhibits a much richer dynamical behavior, e.g. attractive suboptimal symmetric phases even for realizable cases and noiseless data
Thermal activation in atomic friction: revisiting the theoretical analysis
The effect of thermal activation on atomic-scale friction is often described in the framework of the PrandtlâTomlinson model. Accurate use of this model relies on parameters that describe the shape of the corrugation potential ÎČ and the transition attempt frequency f0. We show that the commonly used form of ÎČ for a sinusoidal corrugation potential can lead to underestimation of friction, and that the attempt frequency is not, as is usually assumed, a constant value, but rather varies as the energy landscape evolves. We partially resolve these issues by demonstrating that numerical results can be captured by a model with a fitted ÎČ and using harmonic transition state theory to develop a variable form of the attempt frequency. We incorporate these developments into a more accurate and generally applicable expression relating friction to temperature and velocity. Finally, by using a master equation approach, we verify the improved analytical model is accurate in its expected regime of validity. (Some figures may appear in colour only in the online journal) 1
The IceCube Neutrino Observatory: Instrumentation and Online Systems
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy
neutrino detector built into the ice at the South Pole. Construction of
IceCube, the largest neutrino detector built to date, was completed in 2011 and
enabled the discovery of high-energy astrophysical neutrinos. We describe here
the design, production, and calibration of the IceCube digital optical module
(DOM), the cable systems, computing hardware, and our methodology for drilling
and deployment. We also describe the online triggering and data filtering
systems that select candidate neutrino and cosmic ray events for analysis. Due
to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are
operating and collecting data. IceCube routinely achieves a detector uptime of
99% by emphasizing software stability and monitoring. Detector operations have
been stable since construction was completed, and the detector is expected to
operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review
and proofin
Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption
Neutrinos interact only very weakly, so they are extremely penetrating.
However, the theoretical neutrino-nucleon interaction cross section rises with
energy such that, at energies above 40 TeV, neutrinos are expected to be
absorbed as they pass through the Earth. Experimentally, the cross section has
been measured only at the relatively low energies (below 400 GeV) available at
neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here
we report the first measurement of neutrino absorption in the Earth, using a
sample of 10,784 energetic upward-going neutrino-induced muons observed with
the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting
long paths through the Earth is attenuated compared to a reference sample that
follows shorter trajectories through the Earth. Using a fit to the
two-dimensional distribution of muon energy and zenith angle, we determine the
cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an
order of magnitude higher in energy than previous measurements. The measured
cross section is (stat.) (syst.)
times the prediction of the Standard Model \cite{CooperSarkar:2011pa},
consistent with the expectation for charged and neutral current interactions.
We do not observe a dramatic increase in the cross section, expected in some
speculative models, including those invoking new compact dimensions
\cite{AlvarezMuniz:2002ga} or the production of leptoquarks
\cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445
Search for astrophysical sources of neutrinos using cascade events in IceCube
The IceCube neutrino observatory has established the existence of a flux of
high-energy astrophysical neutrinos inconsistent with the expectation from
atmospheric backgrounds at a significance greater than . This flux has
been observed in analyses of both track events from muon neutrino interactions
and cascade events from interactions of all neutrino flavors. Searches for
astrophysical neutrino sources have focused on track events due to the
significantly better angular resolution of track reconstructions. To date, no
such sources have been confirmed. Here we present the first search for
astrophysical neutrino sources using cascades interacting in IceCube with
deposited energies as small as 1 TeV. No significant clustering was observed in
a selection of 263 cascades collected from May 2010 to May 2012. We show that
compared to the classic approach using tracks, this statistically-independent
search offers improved sensitivity to sources in the southern sky, especially
if the emission is spatially extended or follows a soft energy spectrum. This
enhancement is due to the low background from atmospheric neutrinos forming
cascade events and the additional veto of atmospheric neutrinos at declinations
.Comment: 14 pages, 9 figures, 1 tabl
- âŠ