88 research outputs found
Prenatal Stress and Low Birth Weight: Evidence from the Super Bowl
Studies have estimated the relationship between psychological stress and birth weight by exploiting natural disasters and terrorist attacks, both of which could affect fetal health through other channels. Using data from the National Vital Statistics System for the period 1969-2004, we estimate the effect of prenatal exposure to the Super Bowl on low birth weight. Although major sporting events elicit intense emotions, they do not threaten viewers with direct physical harm or limit access to prenatal care. We find that Super Bowl exposure is associated with a small, but precisely estimated, increase in the probability of low birth weight
A Critical Role for Glycine Transporters in Hyperexcitability Disorders
Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle reflex, known as hyperekplexia (OMIM 149400). This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and non-sense mutations in the glycine receptor (GlyR) α1 subunit gene (GLRA1) on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR β subunit (GLRB) and the GlyR clustering proteins gephyrin (GPNH) and collybistin (ARHGEF9). Recent studies of the Na+/Cl−-dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899). These findings highlight the importance of these transporters in regulating the levels of synaptic glycine
The Extended Blue Continuum and Line Emission around the Central Radio Galaxy in Abell 2597
We present results from detailed imaging of the centrally dominant radio
elliptical galaxy in the cooling flow cluster Abell 2597, using data obtained
with the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space
Telescope (HST). This object is one of the archetypal "blue-lobed" cooling flow
radio elliptical galaxies, also displaying a luminous emission-line nebula, a
compact radio source, and a significant dust lane and evidence of molecular gas
in its center. We show that the radio source is surrounded by a complex network
of emission-line filaments, some of which display a close spatial association
with the outer boundary of the radio lobes. We present a detailed analysis of
the physical properties of ionized and neutral gas associated with the radio
lobes, and show that their properties are strongly suggestive of direct
interactions between the radio plasma and ambient gas. We resolve the blue
continuum emission into a series of knots and clumps, and present evidence that
these are most likely due to regions of recent star formation. We investigate
several possible triggering mechanisms for the star formation, including direct
interactions with the radio source, filaments condensing from the cooling flow,
or the result of an interaction with a gas-rich galaxy, which may also have
been responsible for fueling the active nucleus. We propose that the properties
of the source are plausibly explained in terms of accretion of gas by the cD
during an interaction with a gas-rich galaxy, which combined with the fact that
this object is located at the center of a dense, high-pressure ICM can account
for the high rates of star formation and the strong confinement of the radio
source.Comment: Astrophysical Journal, in press, 34 pages, includes 6 PostScript
figures. Latex format, uses aaspp4.sty and epsf.sty file
The glycinergic system in human startle disease: a genetic screening approach.
Human startle disease, also known as hyperekplexia (OMIM 149400), is a paroxysmal neurological disorder caused by defects in glycinergic neurotransmission. Hyperekplexia is characterised by an exaggerated startle reflex in response to tactile or acoustic stimuli which first presents as neonatal hypertonia, followed in some with episodes of life-threatening infantile apnoea. Genetic screening studies have demonstrated that hyperekplexia is genetically heterogeneous with several missense and nonsense mutations in the postsynaptic glycine receptor (GlyR) alpha1 subunit gene (GLRA1) as the primary cause. More recently, missense, nonsense and frameshift mutations have also been identified in the glycine transporter GlyT2 gene, SLC6A5, demonstrating a presynaptic component to this disease. Further mutations, albeit rare, have been identified in the genes encoding the GlyR beta subunit (GLRB), collybistin (ARHGEF9) and gephyrin (GPHN) - all of which are postsynaptic proteins involved in orchestrating glycinergic neurotransmission. In this review, we describe the clinical ascertainment aspects, phenotypic considerations and the downstream molecular genetic tools utilised to analyse both presynaptic and postsynaptic components of this heterogeneous human neurological disorder. Moreover, we will describe how the ancient startle response is the preserve of glycinergic neurotransmission and how animal models and human hyperekplexia patients have provided synergistic evidence that implicates this inhibitory system in the control of startle reflexes
A Deep HST Search for Escaping Lyman Continuum Flux at z~1.3: Evidence for an Evolving Ionizing Emissivity
We have obtained deep Hubble Space Telescope far-UV images of 15 starburst
galaxies at z~1.3 in the GOODS fields to search for escaping Lyman continuum
photons. These are the deepest far-UV images m_{AB}=28.7, 3\sigma, 1" diameter)
over this large an area (4.83 arcmin^2) and provide the best escape fraction
constraints for any galaxy at any redshift. We do not detect any individual
galaxies, with 3\sigma limits to the Lyman Continuum (~700 \AA) flux 50--149
times fainter (in f_nu) than the rest-frame UV (1500 \AA) continuum fluxes.
Correcting for the mean IGM attenuation (factor ~2), as well as an intrinsic
stellar Lyman Break (~3), these limits translate to relative escape fraction
limits of f_{esc,rel}<[0.03,0.21]. The stacked limit is
f_{esc,rel}(3\sigma)<0.02. We use a Monte Carlo simulation to properly account
for the expected distribution of IGM opacities. When including constraints from
previous surveys at z~1.3 we find that, at the 95% confidence level, no more
than 8% of star--forming galaxies at z~1.3 can have relative escape fractions
greater than 0.50. Alternatively, if the majority of galaxies have low, but
non-zero, escaping Lyman Continuum, the escape fraction can not be more than
0.04. Both the stacked limits, and the limits from the Monte Carlo simulation
suggest that the average ionizing emissivity (relative to non-ionizing UV
emissivity) at z~1.3 is significantly lower than has been observed in Lyman
Break Galaxies (LBGs) at z~3. If the ionizing emissivity of star-forming
galaxies is in fact increasing with redshift, it would help to explain the high
photoionization rates seen in the IGM at z>4 and reionization of the
intergalactic medium at z>6. [Abridged]Comment: Submitted to ApJ (Nov. 6) Comments Welcome. 11 pages, 8 figure
CD4(+)CD25(+)FOXP3(+) Regulatory T Cells Suppress Anti-Tumor Immune Responses in Patients with Colorectal Cancer
BACKGROUND: A wealth of evidence obtained using mouse models indicates that CD4(+)CD25(+)FOXP3(+) regulatory T cells (Treg) maintain peripheral tolerance to self-antigens and also inhibit anti-tumor immune responses. To date there is limited information about CD4(+) T cell responses in patients with colorectal cancer (CRC). We set out to measure T cell responses to a tumor-associated antigen and examine whether Treg impinge on those anti-tumor immune responses in CRC patients. METHODOLOGY AND PRINCIPAL FINDINGS: Treg were identified and characterized as CD4(+)CD25(+)FOXP3(+) using flow cytometry. An increased frequency of Treg was demonstrated in both peripheral blood and mesenteric lymph nodes of patients with colorectal cancer (CRC) compared with either healthy controls or patients with inflammatory bowel disease (IBD). Depletion of Treg from peripheral blood mononuclear cells (PBMC) of CRC patients unmasked CD4(+) T cell responses, as observed by IFNγ release, to the tumor associated antigen 5T4, whereas no effect was observed in a healthy age-matched control group. CONCLUSIONS/SIGNIFICANCE: Collectively, these data demonstrate that Treg capable of inhibiting tumor associated antigen-specific immune responses are enriched in patients with CRC. These results support a rationale for manipulating Treg to enhance cancer immunotherapy
The time is now: Achieving FH paediatric screening across Europe – The Prague Declaration
ReviewFamilial Hypercholesterolaemia (FH) is severely under-recognized, under-diagnosed and under-treated in Europe, leading to a significantly higher risk of premature cardiovascular diseases in those affected. FH stands for inherited, very high cholesterol and affects 1:300 individuals regardless of their age, race, sex, and lifestyle, making it the most common inherited metabolic disorder and a non-modifiable cardiovascular disease risk factor in the world..info:eu-repo/semantics/publishedVersio
The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering
Glycine receptors (GlyRs) and specific subtypes of GABAA receptors are clustered at synapses by the multidomain protein gephyrin, which in turn is translocated to the cell membrane by the GDP-GTP exchange factor collybistin. We report the characterization of several new variants of collybistin, which are created by alternative splicing of exons encoding an N-terminal src homology 3 (SH3) domain and three alternate C termini (CB1, CB2, and CB3). The presence of the SH3 domain negatively regulates the ability of collybistin to translocate gephyrin to submembrane microaggregates in transfected mammalian cells. Because the majority of native collybistin isoforms appear to harbor the SH3 domain, this suggests that collybistin activity may be regulated by protein-protein interactions at the SH3 domain. We localized the binding sites for collybistin and the GlyR {beta} subunit to the C-terminal MoeA homology domain of gephyrin and show that multimerization of this domain is required for collybistin-gephyrin and GlyR-gephyrin interactions. We also demonstrate that gephyrin clustering in recombinant systems and cultured neurons requires both collybistin-gephyrin interactions and an intact collybistin pleckstrin homology domain. The vital importance of collybistin for inhibitory synaptogenesis is underlined by the discovery of a mutation (G55A) in exon 2 of the human collybistin gene (ARHGEF9) in a patient with clinical symptoms of both hyperekplexia and epilepsy. The clinical manifestation of this collybistin missense mutation may result, at least in part, from mislocalization of gephyrin and a major GABAA receptor subtype
- …