900 research outputs found

    The effect of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies

    Full text link
    We study the effects of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies, in particular focusing on two model galaxies similar to IZw18 and NGC1569. We consider both scenarios, clouds put at the beginning of the simulation and continuously created infalling ones. Due to dynamical processes and thermal evaporation, the clouds survive only a few tens of Myr, but during this time they act as an additional cooling agent and the internal energy of cloudy models is typically reduced by 20 - 40% in comparison with models without clouds. The clouds delay the development of large-scale outflows, therefore helping to retain a larger amount of gas inside the galaxy. However, especially in models with continuous creation of infalling clouds, their bullet effect can pierce the expanding supershell and create holes through which the superbubble can vent freshly produced metals. Moreover, assuming a pristine chemical composition for the clouds, their interaction with the superbubble dilutes the gas, reducing the metallicity (by up to ~ 0.4 dex) with respect to the one attained by diffuse models.Comment: 3 pages, 3 figures, to be published in Astronomische Nachrichten (proceedings of Symposium 6 of the JENAM 2008, Vienna

    Galactic Winds in Irregular Starburst Galaxies

    Full text link
    In this paper we present some results concerning the study of the development of galactic winds in blue compact galaxies. In particular, we model a situation very similar to that of the galaxy IZw18, the most metal poor and unevolved galaxy known locally. To do that we compute the chemo-dynamical evolution of a galaxy in the case of one istantaneous isolated starburst as well as in the case of two successive instantaneous starbursts. We show that in both cases a metal enriched wind develops and that the metals produced by the type Ia SNe are lost more efficiently than those produced by type II SNe. We also find that one single burst is able to enrich chemically the surrounding region in few Myr. Both these results are the effect of the assumed efficiency of energy transfer from SNe to ISM and to the consideration of type Ia SNe in this kind of problem. The comparison with observed abundances of IZw18 suggests that this galaxy is likely to have suffered two bursts in its life, with the previous being less intense than the last one.Comment: 3 pages, 1 figure, to appear in the Proceedings of the Conference "Cosmic Evolution", Paris, November 200

    The fate of heavy elements in dwarf galaxies - the role of mass and geometry

    Full text link
    Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies, due to their shallower potential wells, are assumed to be more vulnerable to this phenomenon. Metal loss through galactic winds is also commonly invoked to explain the low metal content of dwarf galaxies. Our main aim in this paper is to show that galactic mass cannot be the only parameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simulations of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to loose metals more easily than roundish ones. Consequently, also the final metallicities attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly produced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shallower potential wells) more easily develop large-scale outflows, therefore the fraction of lost metals tends to be higher.Comment: 13 pages, 11 figures, accepted for publication on Astronomy and Astrophysic

    Modelling the chemical evolution

    Full text link
    Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.Comment: 12 pages, 3 figures, to appear in the proceedings of "Chemical Abundances in the Universe: Connecting First Stars to Planets". IAU Symposium No. 265, 2009. K. Cunha, M. Spite & B. Barbuy, ed

    Non-isothermal filaments in equilibrium

    Full text link
    The physical properties of the so-called Ostriker isothermal filament (Ostriker 1964) have been classically used as benchmark to interpret the stability of the filaments observed in nearby clouds. However, recent continuum studies have shown that the internal structure of the filaments depart from the isothermality, typically exhibiting radially increasing temperature gradients. The presence of internal temperature gradients within filaments suggests that the equilibrium configuration of these objects should be therefore revisited. The main goal of this work is to theoretically explore how the equilibrium structure of a filament changes in a non-isothermal configuration. We solve the hydrostatic equilibrium equation assuming temperature gradients similar to those derived from observations. We obtain a new set of equilibrium solutions for non-isothermal filaments with both linear and asymptotically constant temperature gradients. Our results show that, for sufficiently large internal temperature gradients, a non-isothermal filament could present significantly larger masses per unit length and shallower density profiles than the isothermal filament without collapsing by its own gravity. We conclude that filaments can reach an equilibrium configuration under non-isothermal conditions. Detailed studies of both the internal mass distribution and temperature gradients within filaments are then needed in order to judge the physical state of filaments.Comment: 5 pages, 2 figures, accepted for publication in A&

    The mass-metallicity relation of tidal dwarf galaxies

    Full text link
    Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been thought to not follow the MZ relation, because they inherit the metallicity of the more massive parent galaxies. We present chemical evolution models to investigate if TDGs that formed at very high redshifts, where the metallicity of their parent galaxy was very low, can produce the observed MZ relation. Assuming that galaxy interactions were more frequent in the denser high-redshift universe, TDGs could constitute an important contribution to the dwarf galaxy population. The survey of chemical evolution models of TDGs presented here captures for the first time an initial mass function (IMF) of stars that is dependent on both the star formation rate and the gas metallicity via the integrated galactic IMF (IGIMF) theory. As TDGs form in the tidal debris of interacting galaxies, the pre-enrichment of the gas, an underlying pre-existing stellar population, infall, and mass dependent outflows are considered. The models of young TDGs that are created in strongly pre-enriched tidal arms with a pre-existing stellar population can explain the measured abundance ratios of observed TDGs. The same chemical evolution models for TDGs, that form out of gas with initially very low metallicity, naturally build up the observed MZ relation. The modelled chemical composition of ancient TDGs is therefore consistent with the observed MZ relation of satellite galaxies.Comment: 7 pages, 3 figures, MNRAS accepte

    Galactic consequences of clustered star formation

    Full text link
    If all stars form in clusters and both the stars and the clusters follow a power law distribution which favours the creation of low mass objects, then the numerous low mass clusters will be deficient in high mass stars. Therefore, the mass function of stars, integrated over the whole galaxy (the Integrated Galactic Initial Mass Function, IGIMF) will be steeper at the high mass end than the underlying IMF of the stars. We show how the steepness of the IGIMF depends on the sampling method and on the assumptions made for the star cluster mass function. We also investigate the O-star content, integrated photometry and chemical enrichment of galaxies that result from several IGIMFs, as compared to more standard IMFs.Comment: 4 pages, 2 figures, to appear in online version of Proceedings of IAU S266, a two page version will appear in the Proceedings of IAU S26
    corecore