1,628 research outputs found

    Direct determination of neutrino mass parameters at future colliders

    Full text link
    If the observed light neutrino masses are induced by their Yukawa couplings to singlet right-handed neutrinos, natural smallness of those renders direct collider tests of the electroweak scale neutrino mass mechanisms almost impossible both in the case of Dirac and Majorana (seesaw of type I) neutrinos. However, in the triplet Higgs seesaw scenario the smallness of light neutrino masses may come from the smallness of B-L breaking parameters, allowing sizable Yukawa couplings even for a TeV scale triplet. We show that, in this scenario, measuring the branching fractions of doubly charged Higgs to different same-charged lepton flavours at LHC and/or ILC experiments will allow one to measure the neutrino mass parameters which neutrino oscillation experiments are insensitive to, including the neutrino mass hierarchy, lightest neutrino mass and Majorana phases.Comment: A mistake corrected, experimental errors revised, new references added, conclusions unchange

    Excitonic Dynamical Franz-Keldysh Effect

    Get PDF
    The Dynamical Franz-Keldysh Effect is exposed by exploring near-bandgap absorption in the presence of intense THz electric fields. It bridges the gap between the DC Franz- Keldysh effect and multi-photon absorption and competes with the THz AC Stark Effect in shifting the energy of the excitonic resonance. A theoretical model which includes the strong THz field non-perturbatively via a non-equilibrium Green Functions technique is able to describe the Dynamical Franz-Keldysh Effect in the presence of excitonic absorption.Comment: 4 pages in revtex with 5 figures included using epsf. Submitted to Physical Review Letter

    Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex

    Get PDF
    Synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) couple their stepwise folding to fusion of synaptic vesicles with plasma membranes. In this process, three SNAREs assemble into a stable four-helix bundle. Arguably, the first and rate-limiting step of SNARE assembly is the formation of an activated binary t-SNARE complex on the plasma membrane, which then zippers with the v-SNARE on the vesicle to drive membrane fusion. However, the t-SNARE complex readily misfolds and its structure, stability, and dynamics are elusive. Using single-molecule force spectroscopy, we modeled synaptic t-SNARE complex as a parallel three-helix bundle with a small frayed Cterminus. The helical bundle sequentially folded in an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a central ionic layer, with total unfolding energy of ∼17 kBT. Peptide binding to the CTD activated the t-SNARE complex to initiate NTD zippering with the v-SNARE, a mechanism likely shared by Munc18-1. The NTD zippering then dramatically stabilized the CTD, facilitating further SNARE zippering. The subtle bidirectional tSNARE conformational switch was mediated by the ionic layer. Thus, the t-SNARE complex acts as a switch to enable fast and controlled SNARE zippering required for synaptic vesicle fusion and neurotransmission

    Probing canonical geometrical objects by digital spiral imaging

    Get PDF
    We recently proposed a novel concept to remotely acquire information of objects, based on the discrete orbital angular momentum of ligh. Here we use two different experimental schemes for implementing the technique. We use a canonical phase jump as a target to test the methods and to compare the results

    Quasienergy Spectroscopy of Excitons

    Get PDF
    We theoretically study nonlinear optics of excitons under intense THz irradiation. In particular, the linear near infrared absorption and resonantly enhanced nonlinear sideband generation are described. We predict a rich structure in the spectra which can be interpreted in terms of the quasienergy spectrum of the exciton, via a remarkably transparent expression for the susceptibility, and show that the effects of strongly avoided quasienergy crossings manifest themselves directly, both in the absorption and transmitted sidebands.Comment: 4 pages RevTex, 3 eps figs included, as publishe

    Human rhinoviruses enter and induce proliferation of B lymphocytes

    Get PDF
    Background: Human rhinoviruses (HRVs) are one of the main causes of virus-induced asthma exacerbations. Infiltration of B lymphocytes into the subepithelial tissue of the lungs has been demonstrated during rhinovirus infection in allergic individuals. However, the mechanisms through which HRVs modulate the immune responses of monocytes and lymphocytes are not yet well described. Objective: To study the dynamics of virus uptake by monocytes and lymphocytes, and the ability of HRVs to induce the activation of in vitro-cultured human peripheral blood mononuclear cells. Methods: Flow cytometry was used for the enumeration and characterization of lymphocytes. Proliferation was estimated using 3H-thymidine or CFSE labeling and ICAM-1 blocking. We used bead-based multiplex assays and quantitative PCR for cytokine quantification. HRV accumulation and replication inside the B lymphocytes was detected by a combination of in situ hybridization (ISH), immunofluorescence, and PCR for positive-strand and negative-strand viral RNA. Cell images were acquired with imaging flow cytometry. Results: By means of imaging flow cytometry, we demonstrate a strong and quick binding of HRV types 16 and 1B to monocytes, and slower interaction of these HRVs with CD4+ T cells, CD8+ T cells, and CD19+ B cells. Importantly, we show that HRVs induce the proliferation of B cells, while the addition of anti-ICAM-1 antibody partially reduces this proliferation for HRV16. We prove with ISH that HRVs can enter B cells, form their viral replication centers, and the newly formed virions are able to infect HeLa cells. In addition, we demonstrate that similar to epithelial cells, HRVs induce the production of pro-inflammatory cytokines in PBMCs. Conclusion: Our results demonstrate for the first time that HRVs enter and form viral replication centers in B lymphocytes and induce the proliferation of B cells. Newly formed virions have the capacity to infect other cells (HeLa). These findings indicate that the regulation of human rhinovirus-induced B-cell responses could be a novel approach to develop therapeutics to treat the virus-induced exacerbation of asthma.</p

    Two Disease-Causing SNAP-25B Mutations Selectively Impair SNARE C-terminal Assembly

    Get PDF
    Synaptic exocytosis relies on assembly of three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins into a parallel four-helix bundle to drive membrane fusion. SNARE assembly occurs by stepwise zippering of the vesicle-associated SNARE (v-SNARE) onto a binary SNARE complex on the target plasma membrane (t-SNARE). Zippering begins with slow N-terminal association followed by rapid C-terminal zippering, which serves as a power stroke to drive membrane fusion. SNARE mutations have been associated with numerous diseases, especially neurological disorders. It remains unclear how these mutations affect SNARE zippering, partly due to difficulties to quantify the energetics and kinetics of SNARE assembly. Here, we used single-molecule optical tweezers to measure the assembly energy and kinetics of SNARE complexes containing single mutations I67T/N in neuronal SNARE synaptosomal-associated protein of 25 kDa (SNAP-25B), which disrupt neurotransmitter release and have been implicated in neurological disorders. We found that both mutations significantly reduced the energy of C-terminal zippering by ~ 10 kBT, but did not affect N-terminal assembly. In addition, we observed that both mutations lead to unfolding of the C-terminal region in the t-SNARE complex. Our findings suggest that both SNAP-25B mutations impair synaptic exocytosis by destabilizing SNARE assembly, rather than stabilizing SNARE assembly as previously proposed. Therefore, our measurements provide insights into the molecular mechanism of the disease caused by SNARE mutations

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
    corecore