research

Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex

Abstract

Synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) couple their stepwise folding to fusion of synaptic vesicles with plasma membranes. In this process, three SNAREs assemble into a stable four-helix bundle. Arguably, the first and rate-limiting step of SNARE assembly is the formation of an activated binary t-SNARE complex on the plasma membrane, which then zippers with the v-SNARE on the vesicle to drive membrane fusion. However, the t-SNARE complex readily misfolds and its structure, stability, and dynamics are elusive. Using single-molecule force spectroscopy, we modeled synaptic t-SNARE complex as a parallel three-helix bundle with a small frayed Cterminus. The helical bundle sequentially folded in an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a central ionic layer, with total unfolding energy of ∼17 kBT. Peptide binding to the CTD activated the t-SNARE complex to initiate NTD zippering with the v-SNARE, a mechanism likely shared by Munc18-1. The NTD zippering then dramatically stabilized the CTD, facilitating further SNARE zippering. The subtle bidirectional tSNARE conformational switch was mediated by the ionic layer. Thus, the t-SNARE complex acts as a switch to enable fast and controlled SNARE zippering required for synaptic vesicle fusion and neurotransmission

    Similar works