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Synaptic soluble N-ethylmaleimide-sensitive factor attachment
protein receptors (SNAREs) couple their stepwise folding to fusion
of synaptic vesicles with plasma membranes. In this process, three
SNAREs assemble into a stable four-helix bundle. Arguably, the
first and rate-limiting step of SNARE assembly is the formation of
an activated binary t-SNARE complex on the plasma membrane,
which then zippers with the v-SNARE on the vesicle to drive
membrane fusion. However, the t-SNARE complex readily mis-
folds and its structure, stability, and dynamics are elusive. Using
single-molecule force spectroscopy, we modeled synaptic t-SNARE
complex as a parallel three-helix bundle with a small frayed C-
terminus. The helical bundle sequentially folded in an N-terminal
domain (NTD) and a C-terminal domain (CTD) separated by a
central ionic layer, with total unfolding energy of ∼17 kBT. Peptide
binding to the CTD activated the t-SNARE complex to initiate
NTD zippering with the v-SNARE, a mechanism likely shared by
Munc18-1. The NTD zippering then dramatically stabilized the CTD,
facilitating further SNARE zippering. The subtle bidirectional t-
SNARE conformational switch was mediated by the ionic layer.
Thus, the t-SNARE complex acts as a switch to enable fast and
controlled SNARE zippering required for synaptic vesicle fusion
and neurotransmission.

T-SNARE complex | SNARE four-helix bundle | SNARE assembly | mem-
brane fusion | optical tweezers

Synaptic SNAREs mediate fast and calcium-triggered fusion
of synaptic vesicles to pre-synaptic plasma membranes required
for neurotransmission (1). They consist of VAMP2 (also called
synaptobrevin 2) anchored on vesicles (v-SNARE) and syntaxin
and SNAP-25 located on target plasma membranes (t-SNAREs)
(2). These SNAREs contain characteristic SNARE motifs of ∼60
amino acids (3) (Fig. 1A). Syntaxin and SNAP-25 can form a 1:1
t-SNARE complex (4-6). During membrane fusion, the t- and v-
SNAREs join to form an extraordinarily stable four-helix bundle
(3, 7-10). In the core of the bundle are 15 layers of hydrophobic
amino acids and a central ionic layer containing three glutamines
and one arginine. Whereas the zippering energy and kinetics
between t- and v-SNAREs have recently been measured (8, 9),
the structure, stability, and dynamics of the t-SNARE complex
have not been well understood.

The structure and dynamics of the t-SNARE complex are
crucial for SNARE assembly and membrane fusion. Formation of
the t-SNARE complex is likely an obligate intermediate prior to
SNARE zippering (6, 11-14). A pre-formed t-SNARE complex
docks the vesicles to plasma membranes (15) and boosts the
speed, strength, and accuracy of SNARE zippering (5, 9, 16).
Furthermore, the t-SNARE complex is an important target for
proteins that regulate SNARE zippering and membrane fusion,
such as Munc18-1, synaptotagmins, and complexin (8, 17-19).
Finally, the t-SNARE complex shows intriguing dynamics in

reconstituted membrane fusion. Peptides corresponding to the
VAMP2 N-terminal domain (called Vn peptides or Vn) or C-
terminal domain (Vc) are often used to facilitate membrane
fusion (6, 10, 20, 21). Tightly bound to the t-SNARE complex,
they attenuate SNARE zippering (8, 22), yet surprisingly enhance
the rate of membrane fusion (6, 10). The underlying molecular
mechanisms are not fully understood, which calls for an improved
understanding of the structure and dynamics of the t-SNARE
complex.

Studying t-SNARE folding is challenging using ensemble-
based experimental approaches, because the t-SNARE complex
readily misfolds (6, 21, 23) and is highly dynamic (4). Syntaxin
and SNAP-25 can efficiently form a stable parallel four-helix
bundle containing two syntaxin molecules and one SNAP-25
molecule (the 2:1 complex), which inhibits SNARE zippering and
membrane fusion (5, 6). In addition, it is reported that the t-
SNARE complex folds into at least two alternative conformations
in which either SNARE motif in SNAP-25 partially or completely
dissociates from syntaxin (4). Interestingly, the yeast t-SNARE
homologs Sso1 and Sec9 do not misfold. Fiebig et al. found that
Sso1 in the t-SNARE complex is N-terminally structured but C-
terminally disordered (24). Using optical tweezers, Gao et al.
observed that synaptic t-SNARE complexes unfold cooperatively

Significance

Intracellular membrane fusion is mediated by coupled folding
and assembly of three or four SNARE proteins into a four-
helix bundle. A rate-limiting step is the formation of a partial
complex containing three helixes called the t- or Qabc-SNARE
complex. The t-SNARE complex then serves as a template to
guide stepwise zippering of the fourth helix, a process that
is further regulated by other proteins. The synaptic t-SNARE
complex readily misfolds. Consequently, its conformation, sta-
bility, and dynamics have not been well understood. Using
optical tweezers and theoretical modeling, we elucidated the
folding intermediates and kinetics of the t-SNARE complex and
discovered a long-range conformational switch of t-SNAREs
during SNARE zippering, which are essential for regulated
SNARE assembly during synaptic vesicle fusion.
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Fig. 1. T-SNARE sequences, experimental setup, and derived folding states. (A) Amino acids of the synaptic syntaxin 1A (Syx) and SNAP-25B containing SNARE
motifs. SNAP-25B consists of two SNARE motifs (SN1 and SN2) connected by a disordered linker (magenta line), with four intrinsic cysteine (marked by stars)
mutated to serine. Amino acids of the hydrophobic and ionic layers in the SNARE motifs (numbered from -7 to +8) and their N-terminal extensions (from -16
to -8) are highlighted in yellow. The syntaxin sequence is numbered in red. Four pairs of crosslinked amino acids are indicated by lines and labeled by their
corresponding construct names and pulling sites (arrows). The t-SNARE complex contained three distinct folding domains: the N-terminal domain (NTD), the
C-terminal domain (CTD), and the frayed t-SNARE C-terminus (Tc). (B) Experimental setup to pull a single t-SNARE complex (-8C) containing the N-terminal
regulatory domain (NRD) of syntaxin. The structure of the folded t-SNARE complex shown here was modeled based on the crystal structure of the SNARE
ternary complex (3) and our single-molecule measurements. (C) Force-extension curves (FECs) obtained by pulling (black and green) and relaxing (cyan) the
two SNARE constructs -8C and -12C. The pulling or relaxing direction is indicated by arrows colored the same as the corresponding FECs. Blue arrows mark full
disassembly of the ternary SNARE complex and accompanying dissociation of the VAMP2 molecule. Red lines are best fits of the corresponding FECs by the
worm-like chain model. (D) Schematic of the SNARE transitions among four states, including the fully assembled ternary SNARE state 1, the folded t-SNARE
state 2, the partially folded t-SNARE state 3, and the fully unfolded t-SNARE state 4.

at a high force when pulled from both ends of syntaxin, indicating
a largely structured syntaxin in a stable t-SNARE complex (8, 9).
However, the detailed conformation of the t-SNARE complex,
especially SNAP-25, and its stability and dynamics are not clear.

In this work we measured the conformation, stability, and
dynamics of a single synaptic t-SNARE complex using optical
tweezers. Our single-molecule method prevented the t-SNARE
complex from misfolding, allowing us to focus on the 1:1 complex.
We found that the t-SNARE complex folded in two steps and had
a frayed C-terminus (Tc). Binding of Vn stabilized the CTD, while
binding of Vc stabilized NTD, structured Tc, and promoted initial
ternary SNARE zippering, potentially accounting for the positive
effect of both peptides on membrane fusion.

Results

T-SNARE constructs and experimental setup. To measure the
conformation and stability of the cytoplasmic t-SNARE complex,
we first pulled a single t-SNARE complex at the C-termini of
syntaxin and the first SNARE motif in SNAP-25, or “SN1” (Fig.
1A,B). Their N-termini were crosslinked by a disulfide bond
formed between two cysteine residues. We chose the N-terminal

crosslinking site such that it facilitated refolding of the t-SNARE
complex, but minimally altered its structure. We tested three
crosslinking sites by substituting the corresponding amino acids
with cysteine and designated the SNARE constructs as -8C, -12C,
and -16C (Fig. 1A). To prevent t-SNARE misfolding and ensure
correct crosslinking, we first formed the ternary SNARE complex
and then removed the VAMP2 molecule by unfolding the ternary
complex. The complex was attached on one end to a streptavidin-
coated polystyrene bead through a biotinylated Avi-tag and on
the other end to an anti-digoxigenin antibody-coated polystyrene
bead through a 2,260 bp DNA handle (9) (Fig. 1B). The beads
were trapped in two optical traps formed by focused laser beams.
By moving one optical trap relative to the other, we controlled
the force applied on the SNARE complex and measured the end-
to-end extension of the SNARE-DNA tether in response to the
force. We recorded the force and extension at 10 kHz and used
them to derive t-SNARE folding and stability.

Syntaxin and SN1 are largely structured and fold reversibly.
We first pulled a single ternary SNARE construct -8C to a force
of ∼22 pN, leading to a representative force-extension curve
(FEC) shown in Fig. 1C. Below ∼15 pN, the extension increased
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Submission PDFFig. 2. Energetics and kinetics of three-state folding of the t-SNARE complex. (A) Extension-time trajectories that show reversible transitions of the t-SNARE
complex (-8C) at the indicated constant mean force F. Red lines are idealized trajectories determined by hidden-Markov modeling (HMM) and green dashed
lines mark the corresponding state positions. (B) Force-dependent probabilities of three t-SNARE folding states (top panel) and their associated transition rates
(bottom panel). Experimental measurements (symbols) were fit by a theoretical model (solid lines, see “Materials and Methods”). (C) Extension-time trajectories
of the t-SNARE complex (-12C). Idealized trajectories derived from HMM are shown as red lines.

Table 1. Domains and energies associated with t-SNARE folding. The C-terminal border
of the CTD or NTD is shown by the number of the corresponding amino acid in syntaxin
(Fig. 1A). The total dissociation energy in the last column was calculated as the sum
of the CTD energy, the NTD energy, and the correction for the latter due to N-terminal
crosslinking (Supporting Text and Table S1). Shown in the parenthesis is the standard
deviation. The CTD of Syx Q226A is largely disordered (Fig. S6), and thus not accessed
(“NA”).

SNARE
construct

C-terminal domain (CTD) N-terminal domain (NTD) Total dissociation
energy (kBT)

Position
(a.a)

Unfolding
energy (kBT)

Position
(a.a.)

Unfolding
energy (kBT)

-8C 243 (2) 7 (4) 222 (1) 5 (1) 17 (4)
Syx Q226A NA NA 233 (5) 6 (3) 11 (3)
Syx V244A 243 (5) 7 (4) 223 (3) 5 (2) 17 (4)
SN2C 243 (7) 6 (3) 222 (4) 6 (1) 18 (3)

monotonically with force, mainly due to stretching of the semi-
flexible DNA handle. As a result, the FEC could be fit by a
worm-like chain model (red curve) (25). Above 17 pN, first fast
and then slow extension flickering (regions marked by green
and magenta parallelograms, respectively) appeared successively
as force increased, indicating reversible folding and unfolding
transitions of a SNARE C-terminal region and middle region,
respectively. At ∼20 pN, an abrupt extension jump (indicated by
a blue arrow) represented irreversible unfolding of the remaining
N-terminal region. Pulling the molecule to above 20 pN did
not cause any additional unfolding, which demonstrated that the
SNARE complex had been fully unfolded (Fig. 1C, state 4). The
above interpretations on SNARE transitions were confirmed by
the similarities and differences in the FECs obtained by pulling
the other two SNARE constructs -12C and -16C (Figs. 1C & S1).

Upon relaxation, the SNARE complex in all three constructs
remained unfolded at a force above ∼7 pN, but refolded below

this force (Figs. 1C & S1). The folding process was reversible via
a transient intermediate state (Fig. 1C,D, state 3). Interestingly,
the fully refolded SNARE complex (in state 2) had an extension
greater than the fully assembled ternary SNARE complex (in
state 2), suggesting a partially folded t-SNARE complex. Pulling
the t-SNAREs again revealed a FEC that overlapped the re-
laxation FEC (Fig. 1C, compare the green and cyan FECs for
-12C). These observations indicates that the VAMP2 molecule
dissociated from the t-SNAREs upon disassembly of the ternary
complex. To confirm this interpretation, we added 10 μM VAMP2
into the solution after a single ternary SNARE complex had
been disassembled and found that VAMP2 restored assembly
of the ternary SNARE complex (Fig. S2). Thus, disassembly of
the ternary SNARE complex led to dissociation of the VAMP2
molecule (Fig. 1D, from states 1 to 4) and generated an unfolded
t-SNARE complex that partially refolded at a low force via an
intermediate state 3. In addition, the intermediate state 3 ap-
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Fig. 3. . The three t-SNARE helices fold synchronously. (A) FECs obtained by first pulling (black) and then relaxing (cyan) the t-SNARE constructs SN1C and
SN2C (insets). Further pulling SN2C led to the FEC shown in green. FEC regions were fit by the worm-like chain model (red lines), revealing different SNARE
folding states (red numbers). (B) Schematic of the states and their transitions for SN2C. (C) Extension-time trajectories of SN2C at constant mean forces. The
idealized extension transitions (red lines) were determined by three-state HMM and the average state extensions are marked by green dashed lines. (D) Force-
dependent probabilities (top panel) and transition rates (bottom panel) associated with the different folding states of the t-SNARE complex SN2C. Results of
model fitting are shown in solid lines. Error bars indicate standard deviations.

peared to be partially-zippered as is shown in Fig. 1D, because
shifting the N-terminal crosslinking site away from the SNARE
motifs (from -8C to -12C to -16C) changed the extension of the
intermediate state relative to the extension of the unfolded t-
SNARE state, but not of the folded t-SNARE state (Figs. 1C
& S1). Finally, we found that the N-terminal regulatory domain
(NRD) of syntaxin (Fig. 1B) did not significantly affect t-SNARE
folding, as the t-SNARE complex without the NRD showed an
identical FEC as the complex with the NRD (Fig. S3). This finding
indicates that the NRD did not strongly interact with the SNARE
motifs, consistent with our previous observation (8).

Structure, stability, and folding dynamics of the t-SNARE
complex. To characterize t-SNARE folding at greater spatiotem-
poral resolution, we held the complex at constant mean forces in
the range of 4-6 pN and detected its extension flickering caused
by spontaneous t-SNARE transitions. Figure 2A shows three
representative extension trajectories for construct -8C. We found
that the t-SNARE complex folded and unfolded among states 2, 3,
and 4 with distinct average extensions. We analyzed the extension
trajectories using three-state hidden-Markov modeling (HMM)
(8, 26, 27), which revealed idealized extension transitions (Fig.
2A) and best-fit model parameters, including state probabilities
and transition rates (Fig. 2B). The intermediate state 3 had a

population < 7% and a dwell time of 4-8 ms over the force
range tested (Fig. S4). As force increased, the probabilities of the
folded state 2 and the unfolded state 4 decreased and increased,
respectively, and the probability of the intermediate state 3 first
increased and then decreased (Fig. 2B, top). The observation
suggests that the intermediate 3 was on-pathway for t-SNARE
folding and unfolding. Indeed, the HMM shows that the rates
of sequential transitions between states 4 and 3 and between
states 3 and 2 were 20-1000 fold greater than the rate of direct
transition between states 2 and 4. Accordingly, we ignored the
non-sequential transitions in our subsequent analyses (Fig. 2B,
bottom). To further confirm the t-SNARE transitions, we re-
peated the experiment using construct -12C (Fig. 2C). The larger
loop introduced by crosslinking (Fig. 1A) dramatically slowed
down the transition between states 3 and 4 (Figs. 2C & S4),
as are observed in many other systems (28). Consequently, the
intermediate state 3 was better resolved due to its greater lifetime
(Fig. 2C). These findings confirm that the transition between
states 3 and 4 was caused by the t-SNARE NTD (Fig. 1D). In
contrast, the transition between states 3 and 2 was barely affected
by the change in the crosslinking site, which corroborates the
partially-zippered intermediate state 3.
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Fig. 4. Vc peptides induce Tc folding. (A) VAMP2, Vc, and Vn sequences and ternary SNARE zippering domains, including the middle domain (MD) and
the linker domain (LD). (B) FECs of the t-SNARE complexes -8C and SN2C in the absence and presence of Vc. We first pulled to disassemble a ternary SNARE
complex (black), then relaxed the t-SNARE complex (gray), added Vc (black arrows), and finally unfolded the Vc-bound t-SNARE complex (red FECs and arrows).
(C) Schematic model of Vc-induced Tc folding in -8C. (D) Extension-time trajectories of the t-SNARE complexes -8C (top) and SN2C (bottom) at the indicated
forces in the presence 0.5 µM Vc. The Vc-bound regions are highlighted in cyan. (E) Probability density distributions of the extensions in C (symbols with
corresponding colors) and their best-fits by one Gaussian function or a sum of three Gaussian functions (lines). For the latter, individual Gaussian functions
were plotted in red dashed lines.

To derive the conformations and folding energies of the
partially zippered state and the folded state, we simultaneously
fit the measured state populations, transition rates, forces, and
extension changes using a theoretical model (26). The model
treated the conformations and energies of different folding states
at zero force as fitting parameters and accounted for all the ex-
perimental measurements under tension (Fig. 2B). We assumed
that the three SNARE motifs synchronously zippered from the -7
layer towards the +8 layer, using the t-SNARE structure in the
ternary complex as a template (3) (Materials and Methods). This
assumption was tested by a series of experiments to be described
below. Based on this inferred folding pathway, the positions of
the partially-zippered state 3 and the folded state 2 were mainly
determined by their extensions relative to the extension of the
unfolded state 4. The model fitting showed that the folded t-
SNARE complex was largely a three-helix bundle with frayed

C-termini for both syntaxin and SN1. The boundary between
the ordered and disordered regions lay approximately between
the +4 and +5 layers (Table 1 and Fig. 1A). In the partially
zippered state 3, the boundary was shifted to approximately -1
layer. Thus, the t-SNARE complex folded in two steps, first in
the NTD (from -7 layer to -1 layer) and then in the CTD (from
0 layer to +4 layer). The model fitting also revealed unfolding
energies of 5 kBT for the NTD and of 7 kBT for the CTD. A
small barrier of 4 (±2) kBT for CTD folding suggests a lifetime
range of 7 – 400 µs for the intermediate state 3 at zero force. We
derived a simple theory to relate the unimolecular NTD folding
detected by us to bimolecular association between syntaxin and
SNAP-25 (Supporting Text, Table S1, and Fig. S5). The theory
yielded a binding energy of 17 kBT or a dissociation constant of
41 nM and an apparent binding rate constant of 1.0×104 M-1s-1

between syntaxin and SNAP-25 (Tables 1 & S1). The binding
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Fig. 5. Vn peptide stabilizes the CTD, but not Tc. (A) FECs obtained by pulling the t-SNARE complexes -8C and SN2C in the ternary SNARE complexes (black),
in the presence of Vn (cyan) or both Vn and Vc (red). Events of Vn dissociation, Vc dissociation, and t-SNARE refolding are indicated by cyan, red, and gray
arrows, respectively. (B) Schematic model that illustrates the states and transitions of the t-SNARE complex -8C in the presence of both Vn and Vc. (C) Histogram
distribution of the unfolding force of the t-SNARE complex bound by Vn (top), both Vn and Vc (middle), or Vc only (bottom). In the presence of both Vn and
Vc, the unfolding force is associated with the first unfolding event corresponding to Vc dissociation. (D) Extension-time trajectories of the t-SNARE complexes
-8C and SN2C at constant mean forces F in 0.5 µM Vn. The Vn-bound states are highlighted in cyan. (E) Probability density distributions of the extension regions
in black and cyan in C (symbols) and their best-fits by Gaussian functions (lines).

affinity and rate are consistent with previous measurements of 16
nM and 0.6×104 M-1s-1, respectively (5, 6). Our structural model
for t-SNARE folding was confirmed by effects of single alanine
substitutions in syntaxin, one at the ionic layer in the folded region
(“Syx Q226A”) and the other at the +5 layer in the disordered
region (“Syx V244A”). As was predicted by the model, the former
dramatically destabilized the t-SNARE complex and the latter
barely changed t-SNARE folding (Table 1 and Fig. S6). This
finding also show that the ionic layer plays an important role in
stabilizing the t-SNARE complex. Finally, our model was further
verified by pulling the t-SNARE complex from the N- and C-
termini of syntaxin (Fig. S7) and the results below.

Three SNARE motifs fold synchronously. It was unclear what
role SN2 played in the t-SNARE folding. To examine the impact
of SN2, we split SNAP-25 in construct -12C into SN1 and SN2
and designated the quaternary SNARE construct as SN1C (Fig.
3A). Full disassembly of the complex led to dissociation of both
VAMP2 and SN2, generating a syntaxin-SN1 conjugate. Relaxing
the conjugate down to around zero force, we did not observe any
folding event (Fig. 3A, cyan FEC). This finding demonstrated

that SN2 was essential for t-SNARE folding and that syntaxin
and SN1 could not form any stable structure. The t-SNARE
structure derived by us contrasts with the previous t-SNARE
structures in which SN2 can partially or completely dissociate
(4, 29). Note that syntaxin and SN1 can associate into a four-
helix bundle with two copies of each (16, 30), which cannot
form under our experimental conditions. To further examine the
SN2 conformation in the t-SNARE complex, we made a new t-
SNARE construct designated as SN2C, in which the N-terminus
of SN2 was crosslinked to syntaxin at the -12 layer (Figs. 3A &
1A). We now pulled the t-SNARE complex from the C-termini of
SN2 and syntaxin and obtained representative FECs shown in Fig.
3A. After unfolding the ternary SNARE complex (red arrow),
we relaxed the remaining t-SNAREs and saw their cooperative
folding at ∼3 pN (cyan arrow). The folded t-SNARE complex (in
state 2) again had an extension greater than the corresponding
ternary complex, confirming a frayed SN2 in Tc (Fig. 3B). Similar
to -12C, further pulling the refolded SN2C caused a reversible
transition between states 2 and 3 in the force range of 4-6 pN (Fig.
3A, green FEC). We then held the t-SNARE complex at constant
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Fig. 6. Vc peptides enhance SNARE NTD association. (A) FECs obtained by pulling (black) and relaxing (grey) single ternary SNARE complexes in the presence
of different Vc peptides. The Vc-bound SNARE states are shown in red as in C and D, with the NTD transitions marked by green dashed parallelograms. Vc
peptides bound to SNARE complexes at green points and were displaced at points near green arrows. As a rare event, Vc-53 dissociated from the SNARE
complex at a high force (marked by cyan arrow), followed by t-SNARE unfolding (blue arrow). The time-dependent force and extension corresponding to the
FECs with Vc-57 are shown in Fig. S9A. (B) Diagram of different states and transitions involved in SNARE zippering and Vc binding, including the activated
t-SNARE state viii. (C) Extension-time trajectories showing Vc binding at the indicated constant mean forces. Green dashed lines indicate the positions of
different states shown in B. Extended views of two trajectories here are shown in Fig. S9B. (D) Probability density distributions of the extensions shown in C
corresponding to the Vc-unbound states (black) and the Vc-bound states (red).

Table 2. Properties of the SNARE NTD folding in the absence (-) and presence of Vc
peptides.

Vc peptide Equilibrium force
(pN)

Extension
(nm)

Unfolding energy
(kBT)

Relative folding
rate

- 17.2 (0.5) 6.7 (0.4) 24 (2) 1
Vc-61 18.1 (0.8) 6.7 (0.2) 25 (1) 6.0 (0.1)
Vc-57 20.2 (0.3) 6.7 (0.2) 29 (1) 5.8 (0.1)
Vc-53 18.0 (0.9) 5.2 (0.2) 19 (1) 4.1 (0.1)
Vc-49 15.0 (0.7) 4.3 (0.3) 12 (1) 1.4 (0.2)

mean forces and detected its force-dependent three-state tran-
sitions (Fig. 3C). Like -12C, the new construct exhibited a slow
NTD transition and a fast CTD transition. Detailed analysis (Fig.
3D) showed that the conformations and unfolding energies of
the t-SNARE complex derived from pulling SN2 are close to the
corresponding measurements obtained from pulling SN1 (Table

1). These comparisons revealed that the three SNARE motifs
in the t-SNARE complex zippered synchronously in two steps,
first in NTD and then in CTD, and were all frayed in Tc (Fig.
1D). Compared to the half-zippered or highly dynamic t-SNARE
structures previously reported (4, 10), the t-SNARE structure
deduced by us is significantly more ordered and stable.
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Fig. 7. . Model of t-SNARE folding and conformational changes in SNARE
zippering and membrane fusion. The schematic states involved (not drawn
to scale) are the monomeric t-SNAREs (I), the partially assembled t-SNARE
complex (II), the folded t-SNARE complex (III), the activated t-SNARE complex
(IV), the partially zippered trans-SNARE complex (V), and the zippered SNARE
complex (VI).

Vc binding stabilizes the frayed Tc. To examine effects of Vc
peptides on t-SNARE folding and ternary SNARE zippering, we
tested four Vc peptides that start at different positions in the
VAMP2 sequence but end at the same amino acid number 96
(Fig. 4A). These peptides are designated by “Vc-” followed by
their starting amino acid numbers. We first pulled the t-SNARE
constructs -8C and SN2C in the presence of 10 μM Vc-61 (10).
After unfolding the ternary SNARE complexes (Fig. 4B, black
FECs), we first refolded the t-SNARE complexes at a low force
(gray FECs) and then added Vc-61 into the solution to allow
Vc-61 to bind to the t-SNARE complexes (black arrows). In
subsequent pulling, the Vc-bound t-SNARE complexes showed
extensions identical to the ternary SNARE complex (Fig. 4B,
compare red FECs to black FECs), indicating that Vc binding
induced Tc folding as in the ternary complex (Fig. 4C, state 5).
The Vc-bound t-SNARE complex completely unfolded at ∼10
pN (Fig. 4B, red arrows), which suggests that Vc significantly
enhanced the mechanical stability of the t-SNARE complex.

To further observe the Vc-induced disorder-to-helix transi-
tion in Tc, we held the t-SNARE complex at a constant mean force
in the presence of 0.5 μM Vc-61. For both constructs -8C and
SN2C, we first observed reversible three-state transitions char-
acteristic of the free t-SNARE complex (Fig. 4D, black regions).
Then, the transitions stopped at a low extension, consistent with
the Vc-bound t-SNARE state (cyan regions). The t-SNARE com-
plex remained in the Vc-bound state for more than 20 minutes,
corroborating a strong association between Vc and the t-SNARE
complex. The Vc-bound state 5 in both -8C and SN2C had an
extension that was 2-4 nm lower than that of the folded t-SNARE
complex in state 2, with an average of 2.6 (±0.4) nm (Fig. 4D-
E). The extension change is consistent with folding of the whole
Tc, which extends our previous observation on the Vc-induced
folding in the frayed syntaxin C-terminus (8).

Vn binding stabilizes the CTD, but not Tc. Li et al. recently
demonstrated that the t-SNARE complex pre-bound by Vn also
greatly promotes SNARE-mediated membrane fusion (10). To
pinpoint its underlying mechanism, we investigated the effect of
Vn on t-SNARE folding (Fig. 4A). In the presence of 10 μM Vn,
the t-SNARE complex initially showed the same extension as the
folded t-SNARE state 2 at a low force (Fig. 5A, compare cyan and
gray FECs), indicating that Vn bound to the t-SNARE complex,
but did not induce Tc folding (Fig. 5B, state 6). However, unlike
the free t-SNARE complex, the Vn-bound t-SNARE complex
remained in the folded state to a high force typically around 13
pN. Then the complex abruptly and completely unfolded (Fig.

5A, cyan arrows, Fig. 5B, from states 6 to 4). The unfolding force
of the Vn-bound t-SNARE complex approximately followed a
Gaussian distribution (Fig. 5C, top). The average unfolding force
13.4 (±1.6) pN was significantly higher than the average equilib-
rium unfolding force of the t-SNARE complex alone, or ∼5.4 pN
(Fig. 2B). These observations indicate that Vn greatly stabilized
the t-SNARE CTD. To confirm this finding, we examined Vn
binding at a constant mean force. For both -8C and SN2C, Vn
binding trapped the t-SNARE complex in a low extension state
(Fig. 5D, cyan regions). A comparison of the extension proba-
bility density distributions of the Vn-bound and -unbound states
showed that the Vn-bound t-SNARE state 6 had an extension
identical to the folded t-SNARE state 2 (Fig. 5E). The finding
confirms that Vn stabilized CTD, but not Tc (Fig. 5B). Moreover,
lengthening the Vn peptide to the +3 layer led to the same
conclusion (Fig. S8), indicating a common role of Vn peptides
in specifically stabilizing the CTD. Finally, the Vn-induced CTD
stabilization is further supported by our experiments in the pres-
ence of both Vn and Vc peptides (Fig. 5A-C). Interestingly, Tc
unfolding was enough to dissociate Vc (Fig. 5B, from states 7
to 6). As a result, the distribution of the force to dissociate Vc
did not significantly depend on Vn (Fig. 5C, compare middle
and bottom panels). Therefore, a structured Tc is required for
SNARE CTD zippering. In conclusion, our results suggest that
Vn binding significantly stabilized the CTD, but did not induce
CTD folding, in contrast to a recent derivation (10).

Effect of t-SNARE conformational switch on ternary SNARE
zippering. We have recently shown that the t- and v-SNAREs
zipper stepwise in three distinct domains, the NTD, the middle
domain (MD), and the CTD (8) (Fig. 4A), in a manner similar to
stepwise t-SNARE folding reported here. In particular, the NTDs
of both the ternary SNARE complex and the t-SNARE complex
correspond to the same hydrophobic layers from -7 to -1. Our
above Vn-binding experiment suggests that as VAMP2 zippers to
MD, the t-SNARE CTD is stabilized and forms a rigid template
for the v-SNARE to zipper, thereby promoting the speed and
energy of SNARE zippering. This observation at least partly ex-
plains why Vn peptides enhance membrane fusion (10). However,
it remains unclear how Vc peptides stimulate membrane fusion
(6, 20), given their role in attenuating v-SNARE zippering (8). To
further pinpoint the effect of Vc peptides on SNARE zippering,
we repeated our SNARE zippering assay (8) in the presence of
four Vc peptides with different lengths (Figs. 4A & 6A). Here, a
ternary SNARE complex was crosslinked between syntaxin and
VAMP2 near their -6 layers and pulled from their C-termini in
the presence of 50 µM Vc peptides (Fig. 6B). The FECs showed
the folding states and pathways of the SNARE complex alone
as previously reported (Figs. 6A & S9A, black and grey curves,
and Fig. 6B, states ii-v) (8). However, the FECs also contained
new features from the Vc-bound SNARE complexes (Figs. 6A
& S9A, red curves). Vc binding occurred in the force range of
the overlapping CTD, MD, and NTD transitions (Fig. 6A, green
dots), which suggests that Vc bound to the t-SNARE complex
after VAMP2 was partially or completely unzipped or destabilized
by force (Fig. 6B). The bound Vc was generally displaced at a low
force, as was manifested by an extension drop during relaxation
(Fig. 6A, green arrows, and Fig. 6B, from state vi or vii to state
ii). The Vc displacing force was stochastic and dependent on the
length of the Vc peptide, with a smaller average displacing force
for a longer Vc peptide (Fig. 6A).

Vc binding dramatically changed the energetics of ternary
SNARE zippering. Because Vc binding blocked CTD and MD
folding, the CTD and MD transitions were inhibited and only the
two-state NTD transition remained (Figs. 6C & S9B). Vc binding
changed the NTD stability in a length-dependent manner, as is
indicated by changes in the equilibrium between the folded and
the unfolded NTD states and their equilibrium forces (Table 2).
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For example, at a constant mean force of 17.8 pN (Fig. 6C, black
region in trace b), the SNARE complex frequently unzipped.
However, upon Vc-57 binding the complex primarily resided in
the folded NTD state (red region in trace b). The equilibrium
change was also demonstrated by the change in the extension
probability density distribution (Fig. 6D, compare black and red
curves). As a result, frequent NTD transition was only seen at a
higher force near its equilibrium force of ∼20 pN (Fig. 6C-D).
In addition, Vc-57 binding did not alter the average extension
change accompanying the NTD transition (Fig. 6D and Table 2),
ruling out any large structural change in NTD induced by Vc-
57. These observations indicated that Vc-57 binding significantly
stabilized NTD by inducing a subtle long-range conformational
change, likely helix packing, in the t-SNARE complex. In con-
trast, Vc-53 and Vc-49 destabilized NTD transition (Table 2),
because both peptides partially blocked NTD folding (Fig. 4A)
and decreased the extension changes of NTD transitions (Fig.
6D and Table 2). Based on extensive measurements of force-
dependent NTD transitions, we derived NTD unfolding energies
in the presence of four Vc peptides (Table 2). Whereas Vc-61 only
slightly stabilized the NTD, Vc-57 increased the NTD unfolding
energy by 5 (±2) kBT, significantly stabilizing the NTD. This
comparison suggests that the ionic layer mediated the Vc-induced
t-SNARE conformational switch that stabilized the NTD. In
contrast, Vc-53 and Vc-49 destabilized the NTD progressively, as
both peptides impeded NTD zippering.

Vc peptides also enhanced the rate of NTD folding in a
length-dependent manner (Figs. 6C, S9B, and Table 2). The NTD
of the native SNARE complex slowly assembles but readily dis-
assembles upon vesicle undocking (8, 9), limiting the overall rate
of SNARE assembly and membrane fusion. Munc18-1 and other
regulatory proteins enhance NTD assembly to initiate SNARE
zippering (17, 31, 32). Vc-57 significantly increased the rate and
stability of NTD assembly, suggesting that this peptide efficiently
activated the t-SNARE complex to initiate SNARE zippering.
Other Vc peptides are predicted to promote SNARE zippering
in a descending efficiency order of Vc-61, Vc-53, and Vc-49,
consistent with their order of potency to activate membrane
fusion (20). Vc-49 has widely been used to facilitate SNARE-
mediated fusion (6, 20). Our results suggest that Vc-49 signifi-
cantly destabilized NTD and only slightly enhanced the rate of
NTD zippering. However, Vc-49 binds to the t-SNARE complex
with the highest affinity among the four Vc peptides and may
additionally promote SNARE zippering and membrane fusion
by stabilizing the t-SNARE complex in the 1:1 complex (6).
Alternatively, Vc peptides inhibit SNARE mis-assembly, such
as formation of anti-parallel SNARE bundles, thereby indirectly
promoting functional SNARE assembly and membrane fusion
(19). Note that the two mechanisms of Vc-enhanced SNARE
assembly are not necessarily exclusive: the increased rate or
energy of NTD zippering decreases the yield of SNARE mis-
assembly due to kinetic or thermodynamic partitioning of the
two processes. We expect that the N-terminal crosslinking in our
SNARE constructs did not change the relative stability and rate of
NTD assembly measured by us (Table 2 and Supplementary Text).
Our results demonstrate that Vc peptides not only enhanced the
rate of NTD zippering (33), but also could stabilize the NTD in a
length-dependent manner. Interestingly, Munc18-1 stabilized Tc
and NTD zippering in a manner similar to Vc-57 (8), suggesting
a common mechanism to directly or indirectly promote initial
SNARE zippering and membrane fusion by regulating the t-
SNARE conformation.

Discussion

Using optical tweezers, we measured the folding intermediates,
energies, and kinetics of the synaptic t-SNARE complex and
probed its long-range conformational change during SNARE

zippering using Vn and Vc peptides. We derived a structural
model for the t-SNARE complex in which the three SNARE
motifs formed a three-helix bundle from -7 to +4 layers and
were disordered from +5 to +8 layers. Our structural derivation
assumed a particular t-SNARE folding pathway (“Materials and
Methods”) and a homogeneous worm-like chain model for the
polypeptide. We verified the derived structures by measurements
on the t-SNARE complexes that were not crosslinked, crosslinked
at four N-terminal sites, pulled from three different sites, mu-
tated in syntaxin, split in SNAP-25, or bound by Vn and Vc.
In contrast to other t-SNARE models (4, 10), the t-SNARE
structure derived by us contains a fully ordered binding site (from
-4 to +3 layers) for synaptotagmin (18) and a largely ordered
binding site for complexin (19, 34). T-SNARE folding was robust
under our experimental conditions. Thus, our results revealed
a significantly more structured and stable t-SNARE complex
than previous derivations and corroborated the bidirectional t-
SNARE conformational change crucial for fast and regulated
SNARE zippering (4, 8, 10, 24, 33). However, we did not test t-
SNARE misfolding into the 2:1 complex, which is expected to be
the primary t-SNARE misfolding pathway. In addition, t-SNARE
stability and dynamics may be altered by membranes (4, 35),
which were absent in our experiments.

We propose a model to describe t-SNARE folding during
membrane fusion (Fig. 7). First, the t-SNARE NTD slowly asso-
ciates, forming the partially assembled t-SNARE complex (from
states I to II). Subsequently, this complex spontaneously and
reversibly folds into the full t-SNARE complex (state III). Synap-
totagmin and Munc18-1 then bind to the t-SNARE complex,
docking the vesicle to the plasma membrane (state IV) (14, 15,
18). Munc18-1 stabilizes the t-SNARE complex, which is required
for efficient docking (15). Furthermore, Munc18-1 induces Tc
folding and the NTD conformational change, activating the t-
SNARE complex to initiate SNARE zippering (8, 32, 33). Note
that Munc18-1 also binds to SNAREs in other modes that play
crucial roles in SNARE assembly (8, 14, 31). Binding of v-SNARE
NTD forms a half-zippered trans-SNARE complex, a process that
is assisted by synaptotagmins, complexin, and other proteins (1,
19, 31) (state V). The v-SNARE binding also stabilizes the t-
SNARE CTD in the force-bearing trans-SNARE complex, which
in turn stabilizes associations of regulatory proteins to the trans-
SNARE complex. Finally, calcium triggers further zippering of
v-SNARE along the stabilized t-SNARE template, leading to
fast assembly of the SNARE four-helix bundle and subsequent
membrane fusion (state VI).

Materials and Methods
SNARE proteins. The syntaxin construct comprised the cytoplasmic domain
of rat syntaxin 1A (residues 1-265, with mutation C145S), a spacer sequence
(GGSGNGGSGS), and a C-terminal Avi-tag (GLNDIFEAQKIEWHE). The genes
corresponding to the syntaxin protein and mouse VAMP2 (residues 28-94)
were cloned into the pET-SUMO vector (Thermo Fisher), while the SNAP-25B
gene was inserted into the pET-28a vector. All proteins were expressed in
BL21 (DE3) cells and purified using Ni-NTA beads. The syntaxin protein was
biotinylated in vitro using biotin ligase enzyme (BirA) as previously described
(8, 9). The N-terminal His-tag and SUMO protein were cleaved from the
purified syntaxin and VAMP2 proteins. Syntaxin, SNAP-25 and VAMP2 were
mixed in a molar ratio 1:1: 2 in HEPES buffer containing 10 mM imidazole
and 2 mM tris(2-carboxyethyl)phosphine (TCEP). Ternary SNARE complexes
were formed by incubating the mixture at 4 °C overnight and then purified
using the N-terminal His-tag on SNAP-25.

High-resolution dual-trap optical tweezers. The optical tweezers were
home-built as described (8). Briefly, a 1064 nm laser beam was expanded,
collimated, and split into two orthogonally polarized beams. The beams
were focused by a water-immersion objective with a numerical aperture of
1.2 (Olympus, PA) to form two optical traps. Displacements of the trapped
beads were detected by back-focal plane interferometry. Optical tweezers
were remotely operated through a computer interface written in LabVIEW
(National Instruments, TX).

Single-molecule protein folding experiment. The purified SNARE com-
plexes were crosslinked with the DNA handle as described before (9). An
aliquot of the crosslinked protein-DNA conjugate was incubated with 1 µL
anti-digoxigenin coated polystyrene beads 2.17 µm in diameter (Spherotech,
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IL), diluted to 1 mL phosphate-buffered saline (PBS), and injected into the top
channel of a microfluidic chamber. Streptavidin coated polystyrene beads
of 1.86 µm were injected into the bottom channel. Both top and bottom
channels were connected to a central channel by capillary tubes, where both
kinds of beads were trapped. A single SNARE complex was tethered between
two beads by bringing them close. Data were recorded at 20 kHz, mean-
filtered to 10 kHz, and stored on a hard disc. The single-molecule experiment
was conducted in PBS at 23 (±1) °C. An oxygen scavenging system was added
to prevent potential protein photo-damage by optical traps.

Data analysis. Our methods were described in detail elsewhere (9, 26,
27). Briefly, the extension trajectories were analyzed by two- or three-state
hidden-Markov modeling (HMM), which yielded the probability, extension,
force, lifetime, and transition rates for each state (27). To relate the ex-
perimental measurements to the conformations and energy (or the energy
landscape) of the t-SNARE complex at zero force, we constructed a structural
model for t-SNARE folding (26). In this model, three SNARE motifs were
assumed to synchronously zippered layer by layer from the -7 layer towards
the +8 layer, which established a t-SNARE folding pathway as a function of
the reaction coordinate, the contour length of the unfolded polypeptide
stretched by optical tweezers. We chose the contour lengths and folding
energies of the partially zippered and the folded t-SNARE complexes as

fitting parameters, which allowed us to calculate the total extension of the
SNARE-DNA tether and the total energy of the tether and beads in optical
traps. The extension and energy of the unfolded polypeptide, as well as
the DNA handle, were calculated using the Marko-Siggia formula (25). The
extension of the folded portion was derived from the t-SNARE structure in
the ternary SNARE complex. From the calculated total energies for all states,
we further evaluated the probability of each state based on the Boltzmann
distribution and transition rates based on the Kramers’ equation. Finally, we
fit the calculated state extensions, forces, probabilities, and transition rates
to the corresponding experimental measurements using nonlinear least-
squares fitting, which revealed the conformations and energies of different
t-SNARE folding states as best-fit parameters.
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