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We recently proposed a novel concept to remotely acquire information of objects, based on the discrete orbital angular momentum of light.
Here we use two different schemes for implementing the technique. In order to test the two acquisition methods and to compare their
results, we use as target the simplest canonical phase jump. [DOI: 10.2971/jeos.2007.07014]
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1 INTRODUCTION

A major application of optics is remote sensing and probing
of a variety of properties of matter. Many techniques based
on most known properties of light have been elucidated over
the years to achieve that goal. Available techniques rely, e.g.,
on a particular use of the energy spectra of light signals, their
longitudinal and transverse linear momenta, their temporal
and spatial coherence, and their angular momentum associ-
ated with the polarization of the electromagnetic fields. Nev-
ertheless, the angular momentum can contain not only a spin
contribution associated to the polarization, but also an orbital
contribution associated to the spatial profile of the light beam
amplitude and phase-front [1]. Within the paraxial regime,
both contributions can be measured and manipulated sepa-
rately [2]. The orbital contribution is finding important appli-
cations in a variety of areas, that range from optical tweezing
in biosciences, to microfluidics, micromechanics, and quan-
tum information (see, e.g., [3]-[22], and references therein).

While the spin angular momentum is a workhorse in remote
sensing across the electromagnetic spectrum, the potential of
the orbital angular momentum has not been fully exploited.
The former, often termed polarimetry, is based on the infor-
mation codified in a two-dimensional space, while the latter is
based on the information encoded in the infinite-dimensional
spiral spectrum. We recently put forward the idea of using
such discrete spiral spectra to remotely acquire information of
suitable objects [23]. The technique comprises illuminating the
target with a light beam with a convenient spatial shape, am-
plitude and phase, expanding the reflected or transmitted sig-
nal into spiral eigenstates of orbital angular momentum, and

acquiring information of the target by analyzing the corre-
sponding spiral spectrum. The shape of the spiral spectrum,
the associated spiral bandwidth, or the weights of prescribed
eigenstates carry the sought-after information. The concept
should be suited for particular physical settings specially sen-
sitive to the spiral phase structure of the probing signal, and
in applications where a multidimensional codification scheme
may be beneficial.

In this paper, we present a proof-of-principle implementation
of the technique based on two different acquisition schemes.
We present their characteristics, and discuss their main advan-
tages and drawbacks. The experiments are conducted with a
simple canonical object to elucidate the intrinsic potential of
the schemes. The simplicity of the object allows us to test the
quantitative results of the schemes and to compare them.

2 CONCEPT

A paraxial light beam propagating in the z direction, F(ρ, φ, z),
can be decomposed into spiral modes as

F(ρ, φ, z) = ∑
m

Am(ρ, z) exp(imφ)/
√

2π (1)

where

Am(ρ, z) =
1√
2π

∫ 2π

0
dφF(ρ, φ, z) exp(−imφ), (2)

and (ρ, φ) are the cylindrical coordinates in the transverse
plane. The amplitude of the spiral modes has an azimuthal
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dependence of the form exp(imϕ), so that the phase of each
mode is twisted around the center of the beam m times. The
index m is usually called the winding number, or topological
charge of the phase singularity located at ρ = 0 of the corre-
sponding mode.

The terms Am(ρ, z) describe the radial dependence associ-
ated with every spiral mode. The OAM content of the light
beam is determined by the distribution {Cm}, where Cm =∫ ∞

0 dρρ|Am(ρ, z)|2 [21]. Importantly, the value of Cm is con-
served through free-space propagation [24], i.e., it does not
depend on the coordinate z. The total orbital angular momen-
tum of the beam writes 〈Lz〉 ∝ ∑m mCm. As m can be either
positive or negative, the knowledge of Cm can provide useful
information even for beams with a zero total orbital angular
momentum.

In the kind of applications we are considering, F is the re-
sult of applying a well characterized input beam to an un-
known target. In the simplest case, one can write F(ρ, φ) =
G(ρ, φ) T(ρ, φ), where G is the probe beam, typically a Gaus-
sian beam, and T is the complex transmissivity (or reflectivity)
of the object under investigation.

The goal is to evaluate the magnitude of a specific characteris-
tic of the target, from the measurement of the total, or partial,
OAM content of the light beam that is reflected, or transmit-
ted. There are several techniques proposed to retrieve experi-
mentally the OAM content of a light beam [25]- [27]. Each one
of them exhibits advantages and drawbacks, with a varying
degree of difficulty for its practical implementation.
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FIG. 1 Experimental Set-up. A He-Ne laser illuminates the target. The resulting beam

is expanded with a telescope to take advantage of the whole pattern of a binary fork

hologram (Holo), which diffracts the incoming light into several different orders, each

one with an additional azimuthal phase. Finally with a flip-mount mirror (FPM), one

can direct light into either of the two different measuring systems: Coupling the whole

diffraction order into a single-mode fiber (SMF), or Fourier transforming it with a lens

and measuring the result with a CCD camera. In the inset one can see a close-up of

the target, which in our case consists of a simple glass plate which delays part of the

beam. The delay can be controlled with the tilting angle of the glass plate (Φ).

We consider here two quantities closely related to the sought-

after amplitude of the spiral modes, which can be readily ex-
tracted experimentally. In order to measure both quantities,
we implement the experimental arrangement depicted in Fig-
ure 1. Light is directed to either detection scheme with a flip-
mount mirror, so that one can perform a proper comparison
between both detection schemes.

One of the measuring systems is composed of a fork-like holo-
graphic mask [28, 29], followed by a single mode fiber (SMF)
coupler. The computer generated hologram (CGH) splits the
incoming beam into several orders of diffraction, each one
of them travelling in an slightly different direction. For each
outgoing diffraction order, the CGH impinges a different az-
imuthal phase dislocations to the incoming light field.

The whole beam from the desired diffraction order is then
coupled into the SMF, which acts as a projector onto the corre-
sponding Gaussian mode of the monomode fiber (beam width
w f ). The detected power is thus given by (see Appendix A)

Nm =
4

w2
f
|
∫ ∞

0
dρρAm(ρ) exp(−ρ2/w2

f )|
2, (3)

The coupling of the diffraction order m into the single mode
fiber is thus a measurement on the corresponding m spiral
mode, as expressed in Eq. (3).

To date, such a technique to retrieve partial information about
the spiral spectrum has been mainly used in quantum infor-
mation experiments [30, 31]. Notice that this detection scheme
provides information about the overlap of each of the modes
Am(ρ) with a Gaussian beam, not with the Laguerre-Gaussian
basis. The method is particularly interesting when the light
used to probe the target has also a Gaussian shape.

The second system implemented also makes use of a CGH,
but this time the CGH is followed by a CCD camera that
records each of the diffracted orders coming out from the
hologram, after the application of a Fourier transform with
a lens. From each image taken, we are only interested in the
value of the pixel which is at the central point of the corre-
sponding diffraction order. As shown in the Appendix A, this
quantity can be expressed as

Mm = 2π|
∫ ∞

0
dρρAm(ρ)|2. (4)

This scheme provides information about the average value of
the radial mode. Generally speaking, this method provides
different information about the spiral spectrum than Eq. (3),
as it is readily visible in both formulas.

Note that the presence of light at the central spot of the mode
has been previously used by several authors, e.g., by direct
eye-inspection, to monitor qualitatively the presence of the cor-
responding mode [32, 33]. In sharp contrast, it must be prop-
erly appreciated that in our method such measurement is used
to obtain a quantitative measure of the weight of the mode.

3 SET-UP

In our experiments we use a 10 mW He:Ne laser with a TEM00
mode as the probe beam. The laser beam is directed onto the
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target. The target is a canonical phase jump. The phase step
is produced with a thin microscope glass plate, which can be
moved in and out of the laser beam with a stepper motor. We
vary the inclination of the plate, to introduce different phase
delays.

The effect of the target on the probe beam writes,

T(ρ, φ; x0) =
{

t exp(iγ) if ρ cos(φ) > x0
1 if ρ cos(φ) ≤ x0

(5)

where T(ρ, φ; x0) is the transmittance of the target, t is the
modulus of the transmittance of the plate, γ is the phase jump
produced by the plate, and x0 is the location of the edge of the
plate. We measure the angle of the plate using the reflected
beam from the input face of the glass.

The CGH we use for both measuring systems is a binary am-
plitude hologram, which has enough efficiency for several or-
ders of diffraction. In order to avoid inaccuracies due to the
binary nature of the hologram, we use a 4x telescope to ex-
pand the incoming field that illuminates it.

The output field from the target is analyzed with the two mea-
surement devices described above. In the first measuring sys-
tem, we place the fiber coupler on a translation stage. With the
help of a mirror and displacing the fiber coupler with a trans-
lation stage, we couple every different order of diffraction into
the fiber. The fiber coupler consists on two lenses which can
be moved independently. This system allows the coupling of
more than 80% of the power of a TEM00 mode into the single
mode fiber.

The second analyzing method replaces the whole fiber cou-
pler by a CCD camera which is placed in the focal plane of a
lens. Each frame taken by the camera can store several orders
of diffraction simultaneously, which can be analyzed indepen-
dently. The central pixel of every diffraction order recorded in
the camera, contains the information of the quantity Mm, as
given by Eq. (4). A simple numerical analysis extracts the in-
formation contained in the central pixel value from a series of
images stored in the CCD camera.
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FIG. 2 Numerically calculated values of Cm/C0(∞) (continuous line), Mm/M0(∞)

(dashed line) and Nm/N0(∞) (dotted line) when moving the edge of the glass plate

(see text for details). The edge position is normalized to the beam width. (a) m = 0,

(b) m = 1.

Figure 2 shows how the magnitudes Nm and Mm are related to
the sought-after weight of the spiral modes Cm using model in

Eq. (5) for the glass plate. More specifically, it plots the weight
of the spiral modes m = 0 and m = 1 as a function of the posi-
tion of the edge of the slide (x0), compared with Nm and Mm.
Figure 2 shows that N0,1 and M0,1 are good estimates of the
weight of the corresponding modes m = 0, 1 in our particular
experimental configuration.

4 EXPERIMENTAL RESULTS

In Figure 3 we show the results of our experiment for a partic-
ular inclination of the glass plate. In all figures the horizontal
axis represents the displacement of the edge of the glass-plate.
The two curves in Figure 3a compare the results obtained for
a given inclination of the glass plate (producing a phase jump
of γ ≈ π) with the two methods: with the CCD camera (cir-
cles) and with the fiber coupler (crosses). The data represents,
respectively, M0(x0) and N0(x0).
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FIG. 3 Comparison of mode amplitudes using the two implemented DSI set-ups with

a typical setting of the glass plate and measuring in the mode m = 0. Horizontal

axis: edge position with respect to the centre of the beam. a) CCD method (circles)

and fiber method (crosses). Solid lines, best fit using the theoretical model (details in

text). b) Fiber method (crosses). Solid line is best fit of Figure 3a for the CCD method,

rescaled in the horizontal axis by a factor of
√

2 (details in text).

As shown in the Appendix A, for this particular scheme, the
two measured quantities, as given by Eqns. (3) and (4), verify

Nm(x0) ∝ Mm(x0
wG√

w2
G + w2

f

). (6)

If the coupling of the probe Gaussian beam into the fiber is
optimal, then wG = w f and the above relation simplifies to
Nm(x0) ∝ Mm(x0/

√
2), which applies to the results shown in

Figure 3. The same functions can be used to obtain the best fits
of both the CCD method and the fiber coupler one. The solid
lines in Figure 3 represent the best fits to the data, modeling
the glass plate with Eq. (5). The free parameters used are the
value of the phase jump, the attenuation of the glass plate, the
offset of the stepper motors, the intensity of the light beam and
the width (which in the case of Mm corresponds to the beam
width and in the case of Nm to wG/

√
w2

G + w2
f ).

In Figure 3b one can observe the similarity of the results ob-
tained with both methods. In this figure, we plot the data from
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the measurement with the fiber coupler (crosses). The solid
line is the best fit for the CCD camera data from Figure 3a,
just re-scaled by a factor

√
2, showing that Eq. (6) applies well

to our experimental data. Similar results were found for all
values of the phase jumps. In Figure 4 we show a few of the
complete snapshots taken with the CCD camera. Notice that
although the whole intensity pattern of the transmitted beam
can be rather complex, as shown in Figure 4, the intensity of
the central point of the image, follows Eq. (4).

 (a)  (b)

 (c)  (d)

FIG. 4 Typical images recorded with the analyzing system. First row, edge of the glass

plate is completely out of the beam. Second row, edge of the glass plate is located in

the middle of the probe beam (x0 = 0). First column: mode m = 0, second column:

mode m = 1. We note that the beam in (b) shows a slight asymmetry due to a small

misalignment of the hologram position. In (c), the left lobe is covered by the glass

plate and due to the reflectivity of the glass, has a lower power than the right lobe.

The central result of our experiments is presented in Figure 5,
which depicts the different curves obtained by changing the
inclination of the glass plate. Each curve is labeled with the
phase jump obtained from a best fit using the models ex-
plained above. The two figures show the results for two dif-
ferent modes using the CCD camera method. The quality of
the fits confirm the suitability of the model and shows how
different phase jumps were effectively detected with the DSI
method.

It is worth pointing out additional features which highlight
the potential of the DSI analysis. In Figure 5a, one can observe
that the transmission of the glass plate changes with its incli-
nation. We checked that this change in the transmission oscil-
lates with the inclination of the plate. Due to the fact that the
reflectivity of the two faces of the plate is finite, a Fabry-Perot
cavity is formed inside the cavity, which explains the changes
in the transmitted power of the plate.

Another interesting effect can be seen in Figure 5b, where we
plot the weight of the mode m = 1. When the beam is well
inside the glass plate, ideally the contribution of the modes
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FIG. 5 Amplitude of modes for different glass plate inclinations. The horizontal axis

is the position of the glass plate edge, with respect to the beam centre. Circles:

experimental data, solid lines: best fit. Each curve produced with a different inclination

of the glass plate, labels indicate the phase jump given by the best fit. a) Mode m = 0.

Normalized by the intensity of the laser, retrieved from the best fit. b) Mode m = 1.

All curves normalized to the maximum of the curve γ = 0.9π.

m 6= 0 should be zero. This is due to the fact that the probe
beam is Gaussian and the glass plate maintains the symme-
try of the incoming beam, since it only introduces a uniform
phase and amplitude modulation. Nevertheless, one can ob-
serve that the curves in Figure 5b show a small but non-
vanishing contribution of the mode m = 1. The most likely
source of this deviation is a small displacement of the probe
beam, due to the refraction of the light beam in the glass
plate. Such a deviation might be difficult to observe with other
methods, since the displacement is usually much smaller than
the width of the beam. The use of DSI can thus make possible
to conduct ultra precise measurements that might be difficult
to achieve by other means [34]. In this context, note that the
proper use of a multimodal expansion of a displaced Gaus-
sian beam has recently afforded sub-shot-noise measurements
of small beam displacement [35].

5 CONCLUDING REMARKS

We have presented a proof-of-principle experimental imple-
mentation of a DSI scheme using the simplest canonical tar-
get. We have tested and compared two different methods for
experimentally acquiring the spiral spectrum of a light beam.
The target of our experiments was a phase jump, which was
used to elucidate the accuracy and robustness of the detection
schemes. Under suitable conditions, the two schemes provide
the same information about the target.

Our observations confirm that DSI can remotely obtain geo-
metrical information about amplitude and phase objects, an
ability that might be used to complement information pro-
vided by other methods, or to probe and detect targets dif-
ficult to spot by standard methods. In particular notice that
specialized surface metrology and orientational sorting (e.g.,
[23, 36, 37]), or edge-contrast enhancement of simple targets,
are direct possibilities worth investigating.

While the high sensitivity to phase and amplitude variations
of the scheme advanced here, might pose restrictions on its
practical applicability in turbid or in disordered media, it
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might likewise be used to gain information about the random
properties of the corresponding light path. Finally, notice that
the concept can also be extended to the digital spiral spectra
of near fields, and thus to probing targets at the nanoscale.

A APPENDIX

In this appendix we derive the main equations used through-
out the paper. We start with Eq. (1), the decomposition into
spiral modes of the field being reflected or transmitted by the
target. We repeat here the spiral decomposition for the sake of
clarity:

F(ρ, φ, z) = ∑
n

An(ρ, z) exp(inφ)/
√

2π

An(ρ, z) =
1√
2π

∫ 2π

0
dφF(ρ, φ, z) exp(−inφ).

When the field F(ρ, φ, z), is diffracted by an hologram placed
at z0, each diffraction order acquires a different azimuthal
phase. The complex amplitude Em = F(ρ, φ, z0) exp(−imφ)
of the diffraction order m can be written as

Em(ρ, φ) = ∑
n

An(ρ, z0) exp [i (n − m) φ])/
√

2π. (A.1)

After selecting this diffraction order, the output face of the
hologram is imaged onto a monomode fiber. For a monomode
fiber long enough, the beam which exits the fiber has a spatial
shape which matches the fundamental mode of the fiber. This
mode can be approximated by a Gaussian mode with width
w̃F. Thus the optical power measured after the fiber is

Nm =
2

πw̃F
2 |

∫ 2π

0
dφ

∫ ∞

0
dρρEm(κρ, φ) exp(−ρ2/w̃ 2

F )|2

(A.2)
with κ being the magnification factor of the imaging system.
After performing the azimuthal integral, the only remaining
term of the sum (A.1) is n = m and the expression for Nm
gives

Nm =
4

w̃F
2 |

∫ ∞

0
dρρAm(κρ) exp(−ρ2/w̃ 2

F )|2, (A.3)

which is the same result presented above in Eq. (3), when we
make use of wF = κw̃F. This is the width of the mode of the
fiber after traversing the imaging system backwards onto the
hologram.

For the derivation of Mm, we select an order of diffraction
from the hologram, and perform a Fourier transform opera-
tion. The field Em(ρk, φk) reads

Em(ρk, φk) = ∑
n

1√
2π

∫ ∞

0
ρdρ×

∫ 2π

0
dφAn(ρ) exp [i(n − m)φ] exp [iρkρ cos(φ − φk)]

(A.4)

After performing the integration into the azimuthal coordi-
nate, one obtains

Em(ρk, φk) = ∑
n

√
2π

i(n−m)
exp [i(n − m)φk]∫ ∞

0
ρdρAn(ρ)J(n−m)(ρkρ). (A.5)

The only Bessel function with a nonzero value in the origin is
J0. Therefore, Em(ρk = 0) =

√
2π
in

∫ ∞
0 ρdρAm(ρ)J0(0) and one

readily finds that Mm = |Em(ρk = 0)|2, which is the sought-
after expression.

Finally, we address the particular case where the two intrin-
sically different measurements from Eqs. (3 and 4) provide
the same information. For the case that the probe beam is
gaussian, the radial dependence of the amplitude of the spiral
modes write Am(ρ) = Cam(ρ)exp(−ρ2/w2

G), with C and wG
being the amplitude and width of the gaussian probe beam,
and am(ρ) the spiral information due to the target. The quan-
tities Nm and Mm now read

Nm =
4

w2
f
|C

∫ ∞

0
dρρam(ρ) exp(−ρ2/w2

G) exp(−ρ2/w2
f )|

2,

Mm = 2π|C
∫ ∞

0
dρρam(ρ) exp(−ρ2/w2

G)|2. (A.6)

The expressions of Nm and Mm are very similar, although the
Gaussian modes in the overlap integral have different widths.
Nevertheless, when the set of spiral modes characterizing the
target depend on a free parameter x0 in the following way
am(ρ/x0), then the two measures follow the relation Nm(x0) ∝
Mm(x0 wG/

√
w2

G + w2
f ) and provide the same information.

This is exactly the case for the canonical phase jump used in
the experiments, where the x0 free parameter is the displace-
ment of the phase jump with respect to the center of the beam.
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