9 research outputs found

    Monitoring of toxic microalga Ostreopsis (Dinoflagellate) species in coastal waters of the Mediterranean Sea using molecular PCR-based assay combined with light microscopy

    No full text
    A molecular PCR-based assay was developed and applied to macrophyte and seawater samples containing mixed microphytobenthic and phytoplanktonic assemblages, respectively, in order to detect toxic Ostreopsis species in Mediterranean Sea. The specificity and sensitivity of the molecular PCR assay were assessed with both plasmidic and genomic DNA of the target genus or species using taxon-specific primers in the presence of background macrophyte DNA. The PCR molecular technique allowed rapid detection of the Ostreopsis cells, even at abundances undetectable within the resolution limit of the microscopy technique. Species-specific identification of Ostreopsis was determined only by PCR-based assay, due to the inherent difficulty of morphological identification in field samples. In the monitoring of the toxic Ostreopsis blooms PCR-based methods proved to be effective tools complementary to microscopy for rapid and specific detection of Ostreopsis and other toxic dinoflagellates in marine coastal environments

    Genetic diversity of the genus Ostreopsis Schmidt: phylogeographical considerations and molecular methodology applications for field detection in the Mediterranean Sea.

    No full text
    This study reports some recent phylogeographical considerations on the genus Ostreopsis distribution worldwide, with particular attention to the Mediterranean Sea, and new recent advances on the quali-quantitiative detection of Ostreopsis species along coastal areas of the Mediterranean Sea based on the PCR and quantitative real time PCR (qrt-PCR) assays. It was found that O. cf. ovata is widely dispersed throughout tropical and warm temperate coastal areas. In the Atlantic/Mediterranean region it represents a panmictic population that is highly divergent from Indo-Pacific populations. Furthermore, we demonstrated that the developed qrt-PCR assay is specific, robust and high sample throughput for the quantification of the toxic O. cf. ovata in the environmental samples. This molecular approach may be considered alternative to traditional methods of microscopy and applied for the survey of benthic toxic microalgal species in marine ecosystems
    corecore