60 research outputs found

    The current and future burden of hepatitis B in Switzerland: a modelling study.

    Get PDF
    Chronic hepatitis B infection (defined as sustained detection of hepatitis B virus [HBV] surface antigen [HBsAg] protein in serum) is a leading cause of cirrhosis, hepatocellular carcinoma and liver-related deaths. A situation analysis carried out by the Swiss Federal Office of Public Health estimated the HBsAg prevalence in Switzerland to be 0.53% (95% CI: 0.32-0.89%) in 2015 (~44,000 cases). A lower prevalence of chronic HBV in the younger generation and the adoption of universal coverage in the first year of life are expected to decrease the burden of HBV; however, a number of people in key populations (including migrants) remain undiagnosed and untreated, and infected individuals remain at risk of progressing to cirrhosis, hepatocellular carcinoma and death. Our primary objective was to examine the current and estimate the future disease burden of HBV in Switzerland and the impact of migration. The secondary objective was to estimate the impact of changing future treatment numbers. A modelling study was performed using an existing, validated model (PRoGReSs Model) applied to the Swiss context. Model inputs were selected through a literature search and expert consensus. Population data from the Federal Statistical Office were used alongside prevalence data from the Polaris Observatory to estimate the number of HBV infections among people born abroad. The PRoGReSs Model was populated with and calibrated to the available data and what-if scenarios were developed to explore the impact of intervention on the future burden of disease. A Monte Carlo simulation was used to estimate 95% uncertainty intervals (95% UIs). In 2020, there were an estimated 50,100 (95% UI: 47,500-55,000) HBsAg+ cases among people born abroad. Among people born in Switzerland, there were approximately 62,700 (UI: 58,900-68,400) total HBV infections (0.72% [UI: 0.68-0.79%] prevalence). Prevalence among infants and children under the age of 5 were both <0.1%. By 2030, prevalence of HBV is expected to decrease, although morbidity and mortality will increase. Increasing diagnosis (90%) and treatment (80% of those eligible) to meet the global health sector strategy on viral hepatitis programme targets could prevent 120 cases of hepatocellular carcinoma and 120 liver-related deaths. Thanks to the historical vaccination programmes and the continued rollout of universal 3-dose coverage in the first year of life, Switzerland is expected to exceed the global health sector strategy targets for the reduction of incidence. While overall prevalence is decreasing, the current diagnosis and treatment levels remain below global health sector strategy targets

    Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world.

    Get PDF
    BackgroundVaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries.MethodsTwenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios.ResultsWe estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases.ConclusionsThis study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future.FundingVIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication

    Hepatitis D double reflex testing of all hepatitis B carriers in low-HBV- and high-HBV/HDV-prevalence countries

    Get PDF
    Hepatitis D virus (HDV) infection occurs as a coinfection with hepatitis B and increases the risk of hepatocellular carcinoma, decompensated cirrhosis, and mortality compared to hepatitis B virus (HBV) monoinfection. Reliable estimates of the prevalence of HDV infection and disease burden are essential to formulate strategies to find coinfected individuals more effectively and efficiently. The global prevalence of HBV infections was estimated to be 262,240,000 in 2021. Only 1,994,000 of the HBV infections were newly diagnosed in 2021, with more than half of the new diagnoses made in China. Our initial estimates indicated a much lower prevalence of HDV antibody (anti-HDV) and HDV RNA positivity than previously reported in published studies. Accurate estimates of HDV prevalence are needed. The most effective method to generate estimates of the prevalence of anti-HDV and HDV RNA positivity and to find undiagnosed individuals at the national level is to implement double reflex testing. This requires anti-HDV testing of all hepatitis B surface antigen-positive individuals and HDV RNA testing of all anti-HDV-positive individuals. This strategy is manageable for healthcare systems since the number of newly diagnosed HBV cases is low. At the global level, a comprehensive HDV screening strategy would require only 1,994,000 HDV antibody tests and less than 89,000 HDV PCR tests. Double reflex testing is the preferred strategy in countries with a low prevalence of HBV and those with a high prevalence of both HBV and HDV. For example, in the European Union and North America only 35,000 and 22,000 cases, respectively, will require anti-HDV testing annually

    Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study.

    Get PDF
    BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation

    Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study.

    Get PDF
    BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe

    Liver disease burden of hepatitis C virus infection in Iran and the potential impact of various treatment strategies on the disease burden

    No full text
    Background: Chronic hepatitis C virus (HCV) infection is emerging as the leading cause of viral hepatitis-related liver disease in Iran. Objectives: This study estimated the current and future disease burden of HCV infection in Iran and assessed the impact of various strategies in access to HCV treatment on reducing the disease burden. Materials and Methods: A modelling approach was used to estimate the size of HCV infected population, and disease progression from 2014 to 2030. Literature review and expert consensus informed the model parameters. Base case scenario assumed the currently utilized Interferon (IFN)-based treatment. Five other scenarios assumed utilizing IFN-free direct acting anti-viral regimens with 1, the base case diagnosis and treatment uptake; 2, restricting treatment to severe liver fibrosis; 3, treatment uptake being doubled; 4, stepwise increase in treatment uptake (doubled by 2017, quadrupled thereafter); 5, targeting at least 90% reduction in HCV infections by 2030. Results: In 2014, an estimated 186,500 individuals are living with HCV infection in Iran (median age: 30 years). By 2030, this number will increase to 213,700, while three to four fold increase is expected in the case numbers of decompensated cirrhosis (DC, n = 620), hepatocellular carcinoma (HCC, n = 510), and liver disease death (n = 400), assuming the current diagnosis/treatment settings. As compared with the base case scenario, scenarios 1 and 2 will have a limited impact on HCV disease burden, while scenarios 3 and 4 will result in 45% - 49% decrease in the number of individuals living with HCV infection and 60% - 69% decrease in DC, HCC and liver disease deaths by 2030. For at least 90% reduction in HCV infections by 2030 (scenario 5), diagnosis and treatment rates should be increased to 12,000 and 9,000 individuals per year in 2016, respectively and to 24,000 and 18,000 individuals per year, respectively in 2018 onward. Conclusions: Anincreasingburdenof HCV-related liver disease is expected in Iranunderthe current diagnosisandtreatment levels. Increased diagnosis and treatment uptake is required in combination with enhanced treatment efficacy to reduce the HCV burden. The relatively young age of the HCV infected population, provides an opportunity for timely interventions to avert the projected rising HCV disease burden in Iran
    corecore