132 research outputs found
1977 performance of commercial soybeans in Illinois / 1152
Chiefly tables.Cover title
Recommended from our members
High Density Genetic Maps of Seashore Paspalum Using Genotyping-By-Sequencing and Their Relationship to The Sorghum Bicolor Genome.
As a step towards trait mapping in the halophyte seashore paspalum (Paspalum vaginatum Sw.), we developed an F1 mapping population from a cross between two genetically diverse and heterozygous accessions, 509022 and HI33. Progeny were genotyped using a genotyping-by-sequencing (GBS) approach and sequence reads were analyzed for single nucleotide polymorphisms (SNPs) using the UGbS-Flex pipeline. More markers were identified that segregated in the maternal parent (HA maps) compared to the paternal parent (AH maps), suggesting that 509022 had overall higher levels of heterozygosity than HI33. We also generated maps that consisted of markers that were heterozygous in both parents (HH maps). The AH, HA and HH maps each comprised more than 1000 markers. Markers formed 10 linkage groups, corresponding to the ten seashore paspalum chromosomes. Comparative analyses showed that each seashore paspalum chromosome was syntenic to and highly colinear with a single sorghum chromosome. Four inversions were identified, two of which were sorghum-specific while the other two were likely specific to seashore paspalum. These high-density maps are the first available genetic maps for seashore paspalum. The maps will provide a valuable tool for plant breeders and others in the Paspalum community to identify traits of interest, including salt tolerance
Optical Phase-Space-Time-Frequency Tomography
We present a new approach for constructing optical phase-space-time-frequency
tomography (OPSTFT) of an optical wave field. This tomography can be measured
by using a novel four-window optical imaging system based on two local
oscillator fields balanced heterodyne detection. The OPSTFT is a Wigner
distribution function of two independent Fourier Transform pairs, i.e.,
phase-space and time-frequency. From its theoretical and experimental aspects,
it can provide information of position, momentum, time and frequency of a
spatial light field with precision beyond the uncertainty principle. We
simulate the OPSTFT for a light field obscured by a wire and a single-line
absorption filter. We believe that the four-window system can provide spatial
and temporal properties of a wave field for quantum image processing and
biophotonics.Comment: 11 pages, 6 figure
Continuous-variable optical quantum state tomography
This review covers latest developments in continuous-variable quantum-state
tomography of optical fields and photons, placing a special accent on its
practical aspects and applications in quantum information technology. Optical
homodyne tomography is reviewed as a method of reconstructing the state of
light in a given optical mode. A range of relevant practical topics are
discussed, such as state-reconstruction algorithms (with emphasis on the
maximum-likelihood technique), the technology of time-domain homodyne
detection, mode matching issues, and engineering of complex quantum states of
light. The paper also surveys quantum-state tomography for the transverse
spatial state (spatial mode) of the field in the special case of fields
containing precisely one photon.Comment: Finally, a revision! Comments to lvov(at)ucalgary.ca and
raymer(at)uoregon.edu are welcom
Carbon dynamics of a warm season turfgrass using the eddy-covariance technique
Despite their ubiquitous presence in the urban landscape throughout the United States, scant attention has been given to evaluate the magnitude of net carbon balance from turfgrasses. Warm season turfgrasses, in particular, have largely been understudied for their carbon sequestration potential. With questions being frequently raised on the environment friendliness of warm season turfgrasses, detailed and robust studies focusing on the carbon behavior of such systems are warranted. This study delves into the carbon balance of ‘Tifway’ bermudagrass, the extensively used warm-season turfgrass in Georgia and other subtropical and warm temperate areas. Using the eddy-covariance method, the amount of CO2 captured by a highly managed turfgrass system was measured by deploying two eddy-covariance systems for the study period of 31 months. The results show that ‘Tifway’ bermudagrass is a net sink of carbon, sequestering it at the rate of 4.51–5.15 Mg C ha−1 yr−1. The turf canopy as well as management activities carried out in the farm appear to have a powerful influence on the carbon behavior of the turf. Seasonal and monthly fluxes suggest that turf is an efficient assimilator of carbon during its active growth period of summer and fall months. The results show that the turf sequestered higher amounts of carbon than many agricultural crop systems, supporting the assertion that it is an efficient assimilator of atmospheric carbon. © 201
Radon transform and pattern functions in quantum tomography
The two-dimensional Radon transform of the Wigner quasiprobability is
introduced in canonical form and the functions playing a role in its inversion
are discussed. The transformation properties of this Radon transform with
respect to displacement and squeezing of states are studied and it is shown
that the last is equivalent to a symplectic transformation of the variables of
the Radon transform with the contragredient matrix to the transformation of the
variables in the Wigner quasiprobability. The reconstruction of the density
operator from the Radon transform and the direct reconstruction of its
Fock-state matrix elements and of its normally ordered moments are discussed.
It is found that for finite-order moments the integration over the angle can be
reduced to a finite sum over a discrete set of angles. The reconstruction of
the Fock-state matrix elements from the normally ordered moments leads to a new
representation of the pattern functions by convergent series over even or odd
Hermite polynomials which is appropriate for practical calculations. The
structure of the pattern functions as first derivatives of the products of
normalizable and nonnormalizable eigenfunctions to the number operator is
considered from the point of view of this new representation.Comment: To appear on Journal of Modern Optics.Submitted t
Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (\u3ci\u3ePaspalum vaginatum\u3c/i\u3e)
Background
Seashore paspalum (Paspalum vaginatum), a halophytic warm-seasoned perennial grass, is tolerant of many environmental stresses, especially salt stress. To investigate molecular mechanisms underlying salinity tolerance in seashore paspalum, physiological characteristics and global transcription profiles of highly (Supreme) and moderately (Parish) salinity-tolerant cultivars under normal and salt stressed conditions were analyzed. Results
Physiological characterization comparing highly (Supreme) and moderately (Parish) salinity-tolerant cultivars revealed that Supreme’s higher salinity tolerance is associated with higher Na+ and Ca2+ accumulation under normal conditions and further increase of Na+ under salt-treated conditions (400 mM NaCl), possibly by vacuolar sequestration. Moreover, K+ retention under salt treatment occurs in both cultivars, suggesting that it may be a conserved mechanism for prevention of Na+ toxicity. We sequenced the transcriptome of the two cultivars under both normal and salt-treated conditions (400 mM NaCl) using RNA-seq. De novo assembly of about 153 million high-quality reads and identification of Open Reading Frames (ORFs) uncovered a total of 82,608 non-redundant unigenes, of which 3250 genes were identified as transcription factors (TFs). Gene Ontology (GO) annotation revealed the presence of genes involved in diverse cellular processes in seashore paspalum’s transcriptome. Differential expression analysis identified a total of 828 and 2222 genes that are responsive to high salinity for Supreme and Parish, respectively. “Oxidation-reduction process” and “nucleic acid binding” are significantly enriched GOs among differentially expressed genes in both cultivars under salt treatment. Interestingly, compared to Parish, a number of salt stress induced transcription factors are enriched and show higher abundance in Supreme under normal conditions, possibly due to enhanced Ca2+ signaling transduction out of Na+ accumulation, which may be another contributor to Supreme’s higher salinity tolerance. Conclusion
Physiological and transcriptome analyses of seashore paspalum reveal major molecular underpinnings contributing to plant response to salt stress in this halophytic warm-seasoned perennial grass. The data obtained provide valuable molecular resources for functional studies and developing strategies to engineer plant salinity tolerance
Genetic load and transgenic mitigating genes in transgenic \u3ci\u3eBrassica rapa\u3c/i\u3e (field mustard) × \u3ci\u3eBrassica napus\u3c/i\u3e (oilseed rape) hybrid populations
Abstract Background
One theoretical explanation for the relatively poor performance of Brassica rapa (weed) × Brassica napus (crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results
In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003) and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005)]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems), there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001), although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a fitness-mitigating dwarfing gene that that is beneficial for crops but deleterious for weeds (a transgene mitigation measure), there was a dramatic decrease in the number of transgenic hybrid progeny persisting in the population. Conclusion
The effects of genetic load of crop and in some situations, weed alleles might be beneficial under certain environmental conditions. However, when genetic load was directly incorporated into transgenic events, e.g., using a TM construct, the number of transgenic hybrids and persistence in weedy genomic backgrounds was significantly decreased
Homodyne detection for measuring internal quantum correlations of optical pulses
A new method is described for determining the quantum correlations at
different times in optical pulses by using balanced homodyne detection. The
signal pulse and sequences of ultrashort test pulses are superimposed, where
for chosen distances between the test pulses their relative phases and
intensities are varied from measurement to measurement. The correlation
statistics of the signal pulse is obtained from the time-integrated difference
photocurrents measured.Comment: 7 pages, A4.sty include
- …