130 research outputs found

    Light Quark Physics with Dynamical Wilson Fermions

    Full text link
    We present results for spectroscopy, quark masses and decay constants obtained from SESAM's and TkL's large statistics simulations of QCD with two dynamical Wilson fermions.Comment: 3 pages; to appear in the proceedings of Lat.'9

    Glueballs and string breaking from full QCD

    Get PDF
    We present results on the static potential, and torelon and glueball masses from simulations of QCD with two flavours of dynamical Wilson fermions on 163×3216^3\times 32 and 243×4024^3\times 40 lattices at β=5.6\beta=5.6.Comment: Talk presented by Gunnar Bali at International Symposium on Lattice Field Theories (Lattice 97), Edinburgh, July 1997, 3 pages LaTeX (epscrc2.sty) with 4 eps figure

    apeNEXT: A multi-TFlops Computer for Simulations in Lattice Gauge Theory

    Full text link
    We present the APE (Array Processor Experiment) project for the development of dedicated parallel computers for numerical simulations in lattice gauge theories. While APEmille is a production machine in today's physics simulations at various sites in Europe, a new machine, apeNEXT, is currently being developed to provide multi-Tflops computing performance. Like previous APE machines, the new supercomputer is largely custom designed and specifically optimized for simulations of Lattice QCD.Comment: Poster at the XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003, 3 pages, Latex. PSN FRAP15. Replaced for adding forgotten autho

    Critical Dynamics of the Hybrid Monte Carlo Algorithm

    Full text link
    We investigate the critical dynamics of the Hybrid Monte Carlo algorithm approaching the chiral limit of standard Wilson fermions. Our observations are based on time series of lengths O(5000) for a variety of observables. The lattice sizes are 16^3 x 32 and 24^3 x 40. We work at beta=5.6, and kappa=0.156, 0.157, 0.1575, 0.158, with 0.83 > m_pi/m_rho > 0.55. We find surprisingly small integrated autocorrelation times for local and extended observables. The dynamical critical exponent zz of the exponential autocorrelation time is compatible with 2. We estimate the total computational effort to scale between V^2 and V^2.25 towards the chiral limit.Comment: 3 pages, Latex with espcrc2.sty and postscript figures, Talk given at Lattice 9

    SESAM and TXL Results for Wilson Action--A Status Report

    Full text link
    Results from two studies of full QCD with two flavours of dynamical Wilson fermions are presented. At beta=5.6, the region 0.83 > m_pi/m_rho > 0.56 at m_pia > 0.23 L^{-1} is explored. The SESAM collaboration has generated ensembles of about 200 statistically independent configurations on a 16^3 x 32-lattice at three different kappa-values and is entering the final phase of data analysis. The TXL simulation on a 24^3 x 40-lattice at two kappa-values has reached half statistics and data analysis has started recently, hence most results presented here are preliminary. The focus of this report is fourfold: we demonstrate that algorithmic improvements like fast Krylov solvers and parallel preconditioning recently introduced can be put into practise in full QCD simulations, we present encouraging observations as to the critical dynamics of the Hybrid Monte Carlo algorithm in the approach to the chiral limit, we mention signal improvements of noisy estimator techniques for disconnected diagrams to the pi-N sigma term, and we report on SESAM's results for light hadron spectrum, light quark masses, and heavy quarkonia.Comment: 24 pages, tex + postscript figures, to appear in Proceedings of Int. Workshop "Lattice QCD on Parallel Computers", University of Tsukuba, Japa

    Modern Electronic Techniques Applied to Physics and Engineering

    Get PDF
    Contains reports on two research projects

    Non-perturbatively Improved Heavy-Light Mesons: Masses and Decay Constants

    Get PDF
    We present a study of the heavy-light spectrum and of the D- and B-meson decay constants. The results wer e obtained in the quenched approximation, by using the non-perturbatively improved Clover lattice action at beta=6.2, with a sample of 100 configurations, on a 24^3 x 64 lattice. After a careful analysis of th e systematic errors present in the extraction of the physical results, by assuming quite conservative discretization errors, we find f_Ds=231 +/- 12^{+6}_{-1} MeV, f_D = 211 +/- 14^{+0}_{-12} MeV, f_Ds/f_D=1.10(2), f_Bs = 204 +/- 16^{+28}_{-0} MeV, f_B = 179 +/- 18^{+26}_{-9} MeV, f_Bs/f_B=1.14(3)^{+0}_{-1}. Our results, which have smaller discretization errors than many previous estimates at fixed value of the lattice spacing aa, support a large value of f_B in the quenched approximation.Comment: 26 pages, 9 Postscript figure

    The apeNEXT project (Status report)

    Full text link
    We present the current status of the apeNEXT project. Aim of this project is the development of the next generation of APE machines which will provide multi-teraflop computing power. Like previous machines, apeNEXT is based on a custom designed processor, which is specifically optimized for simulating QCD. We discuss the machine design, report on benchmarks, and give an overview on the status of the software development.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 8 pages, LaTeX, 12 eps figures. PSN THIT00

    Modern Electronic Techniques Applied to Physics and Engineering

    Get PDF
    Contains reports on three research projects
    • …
    corecore