10 research outputs found

    Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines

    Get PDF
    Condition-based maintenance plays an important role to ensure the working condition and to increase the availability of the machinery. The feature calculation and feature extraction are critical signal processing that allow to obtain a high-performance characterization of the available physical magnitudes related to specific working conditions of machines. Aiming to overcome this issue, this research proposes a novel condition monitoring strategy based on the spectral energy estimation and Linear Discriminant Analysis for diagnose and identify different operating conditions in an induction motor-based electromechanical system. The proposed method involves the acquisition of vibration signals from which the frequency spectrum is computed through the Fast Fourier Transform. Subsequently, such frequency spectrum is segmented to estimate a feature matrix in terms of its spectral energy. Finally, the feature matrix is subjected to a transformation into a 2-dimentional base by means of the Linear Discriminant Analysis and the final diagnosis outcome is performed by a NN-based classifier. The proposed strategy is validated under a complete experimentally dataset acquired from a laboratory electromechanical system.Peer ReviewedPostprint (published version

    Assessing Children's Spatiotemporal Exposures to Transportation Pollutants in Near-road Communities

    No full text
    Final ReportTraffic-related air pollution has a profound impact on human health especially for residents living in near-road communities which are constantly exposed these air pollutants. A near-road community is expected to observe significant spatial and temporal variations in pollutant concentrations, as air pollution resulting from emissions from major highways decreases rapidly from the highway. This research conducted on-site traffic and air quality measurements on four critical transportations related air pollutants, PM2.5, PM10, NO2, O3, as well as emission and air dispersion modeling of transportation emission impacts in a near-road community. Using numerical models provided by the EPA, integrated with field measurements of both traffic and air quality, this research developed spatial and temporal pollutant concentration variation patterns in a near-road community using MOVES and AERMOD, EPA emissions and dispersion models. It was observed that modeled-to-monitored comparisons show that air quality impact in near-road communities resulting from traffic-related emissions are dominated by regional background concentrations. Additionally, the AERMOD predictions rendered highest concentration estimates at locations where the traffic volume is the highest and downwind of the prevailing winds. However, impacts of the traffic emissions on the air quality subside rapidly with increasing distance away from the highway, at around 200 meters. This research also apportioned the differences in exposure concentrations to background concentrations and those contributed from major highways. In the near-road community studied, traffic emissions from the highway were 4.8 times higher than the contributions made by local arterial roads. For better transportation air quality impact assessments, higher quality traffic data such as time-specific traffic volume and fleet information as well as meteorological data such as site-specific surface meteorological could help yield more accurate concentration predictions.U.S. Department of Transportation 69A355174711

    Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines

    No full text
    Condition-based maintenance plays an important role to ensure the working condition and to increase the availability of the machinery. The feature calculation and feature extraction are critical signal processing that allow to obtain a high-performance characterization of the available physical magnitudes related to specific working conditions of machines. Aiming to overcome this issue, this research proposes a novel condition monitoring strategy based on the spectral energy estimation and Linear Discriminant Analysis for diagnose and identify different operating conditions in an induction motor-based electromechanical system. The proposed method involves the acquisition of vibration signals from which the frequency spectrum is computed through the Fast Fourier Transform. Subsequently, such frequency spectrum is segmented to estimate a feature matrix in terms of its spectral energy. Finally, the feature matrix is subjected to a transformation into a 2-dimentional base by means of the Linear Discriminant Analysis and the final diagnosis outcome is performed by a NN-based classifier. The proposed strategy is validated under a complete experimentally dataset acquired from a laboratory electromechanical system.Peer Reviewe

    Evaluation of multiclass novelty detection algorithms for electric machine monitoring

    No full text
    The detection of unexpected events represents, currently, one of the most critical challenges dealing with electromechanical system diagnosis. In this regard, machine learning based algorithms widely applied in other fields of application are being considered now to face the novelty detection during the electric machine monitoring. In this study, an electrical monitoring scheme is considered for novelty detection performance evaluation, where vibration signals under different bearing fault conditions are acquired. Thus, the common electric machine monitoring framework, that is, a set of features estimated from a limited number of measurements, is considered in front of the three main novelty detection approaches: probability, domain and distance based. Performance of the corresponding approaches are studied and discussed experimentally. It is revealed that, although novelty detection provides enhanced diagnosis results in all cases, the response of some approaches fit better with the patterns resulting from the electric machine faults and the characteristics of the available measurements.Peer ReviewedPostprint (published version

    Evaluation of multiclass novelty detection algorithms for electric machine monitoring

    No full text
    The detection of unexpected events represents, currently, one of the most critical challenges dealing with electromechanical system diagnosis. In this regard, machine learning based algorithms widely applied in other fields of application are being considered now to face the novelty detection during the electric machine monitoring. In this study, an electrical monitoring scheme is considered for novelty detection performance evaluation, where vibration signals under different bearing fault conditions are acquired. Thus, the common electric machine monitoring framework, that is, a set of features estimated from a limited number of measurements, is considered in front of the three main novelty detection approaches: probability, domain and distance based. Performance of the corresponding approaches are studied and discussed experimentally. It is revealed that, although novelty detection provides enhanced diagnosis results in all cases, the response of some approaches fit better with the patterns resulting from the electric machine faults and the characteristics of the available measurements.Peer Reviewe

    Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines

    No full text
    Condition-based maintenance plays an important role to ensure the working condition and to increase the availability of the machinery. The feature calculation and feature extraction are critical signal processing that allow to obtain a high-performance characterization of the available physical magnitudes related to specific working conditions of machines. Aiming to overcome this issue, this research proposes a novel condition monitoring strategy based on the spectral energy estimation and Linear Discriminant Analysis for diagnose and identify different operating conditions in an induction motor-based electromechanical system. The proposed method involves the acquisition of vibration signals from which the frequency spectrum is computed through the Fast Fourier Transform. Subsequently, such frequency spectrum is segmented to estimate a feature matrix in terms of its spectral energy. Finally, the feature matrix is subjected to a transformation into a 2-dimentional base by means of the Linear Discriminant Analysis and the final diagnosis outcome is performed by a NN-based classifier. The proposed strategy is validated under a complete experimentally dataset acquired from a laboratory electromechanical system.Peer Reviewe

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore