86 research outputs found

    Analysis of fastening element impact on pipe modal vibrations

    Get PDF
    One of the approaches for noise reduction in pipeline transport systems lies in the selection of appropriate fasteners. Therefore, it is important to know how different pipe holders change vibrational behavior of the pipe. This paper investigates the influence of clamping elements on modal vibrations of the pipe. A measurement method is proposed for determination of the damping factor that appears due to the insertion of a pipe holder

    The research system for vibration analysis in domestic installation pipes

    Get PDF
    A measurement and data processing system was developed for investigation of processes that influence sound propagation in pipes, which are commonly used in residence building industry. An impact-type excitation was mainly used for a controlled wide-band frequency mechanical vibrations excitation. Pipe surface vibrations were measured by means of accelerometers and microphones. Scanning device was used for positioning transducers over a tested pipe. The wave propagation and vibration analysis in pipeline segments of several types of pipes (plastic and metallic) was carried out. Because of various pipes working conditions, empty and filled pipes were tested as well. The experimental data indicates that both in metal and plastic pipes vibrations up to several kilohertz may propagate with low attenuation facto

    A new method for formulating crack spacing models of RC ties

    Get PDF
    Cracking of concrete is one of the most complicated phenomena in reinforced concrete analysis and is one of the key aspects governing serviceability analysis of RC structures. Current methods for investigating cracking rely on empirical approaches that give unreliable results with errors of multiple times the real value. A new non-empirical method based on the combination of the stress-transfer and the smeared approaches is proposed for deriving crack spacing models. The stress-transfer approach governs the strain distribution of the reinforcement between the consecutive cracks whereas the smeared approach allows for the estimation of the mean strain of the element. The suggested method introduces the concept of damage zones: the bond in the area adjacent to the normal cracks is considered to be fully damaged, thus bond behaviour is non-uniform in the segment between cracks. Crack spacing models were derived using the load-strain analysis method presented in the Eurocode 2 and were shown to give results that are in good agreement with the crack spacing values taken from available experimental data

    Application of free vibration technique for evaluation of vibro-isolation properties of pipe fixing elements

    Get PDF
    One approach for reducing noises in pipeline transport systems is selection of appropriate fasteners. Therefore, it is important to know vibro-acoustic characteristics of the fastening elements. This paper proposes a measurement system for determination of dynamic properties of pipe fastening elements and describes performed experiments that demonstrate characteristics dependence on clamping force, construction of the holder and its vibration mode

    The research system for vibration analysis in domestic installation pipes

    Get PDF
    A measurement and data processing system was developed for investigation of processes that influence sound propagation in pipes, which are commonly used in residence building industry. An impact-type excitation was mainly used for a controlled wide-band frequency mechanical vibrations excitation. Pipe surface vibrations were measured by means of accelerometers and microphones. Scanning device was used for positioning transducers over a tested pipe. The wave propagation and vibration analysis in pipeline segments of several types of pipes (plastic and metallic) was carried out. Because of various pipes working conditions, empty and filled pipes were tested as well. The experimental data indicates that both in metal and plastic pipes vibrations up to several kilohertz may propagate with low attenuation facto

    Analysis of fastening element impact on pipe modal vibrations

    Get PDF
    One of the approaches for noise reduction in pipeline transport systems lies in the selection of appropriate fasteners. Therefore, it is important to know how different pipe holders change vibrational behavior of the pipe. This paper investigates the influence of clamping elements on modal vibrations of the pipe. A measurement method is proposed for determination of the damping factor that appears due to the insertion of a pipe holder

    Temperature-Induced Structural Transformations in Undoped and Eu3+-Doped Ruddlesden–Popper Phases Sr2SnO4 and Sr3Sn2O7: Relation to the Impedance and Luminescence Behaviors

    Get PDF
    We report that luminescence of Eu3+ ion incorporated into Ruddlesden–Popper phases allows monitoring phase transition in powders (instead of single crystals), in a time-efficient manner (compared to neutron diffraction), and importantly, with greater sensitivity than previous methods. Crystal structure and dielectric response of undoped and 0.5%Eu3+-doped Sr3Sn2O7 ceramics were studied as a function of temperature over the temperature range of 300–800 K. The luminescence studies of 0.5%Eu3+-doped Sr2SnO4 and Sr3Sn2O7 samples were performed in the temperature range of 80–500 K. These results were compared with the respective dependences for the undoped compounds. The structural transformations in 0.5%Eu3+-doped Sr3Sn2O7 were found at 390 and 740 K. The former is associated with the isostructural atomic rearrangement that resulted in a negative thermal expansion along two of three orthorhombic crystallographic axes, while the latter corresponds to the structural transition from the orthorhombic Amam phase to the tetragonal I4/mmm one. A similar temperature behavior with the structural transformations in the same temperature ranges was observed in undoped Sr3Sn2O7, although the values of lattice parameters of the Eu3+-doped and undoped compounds were found to be slightly different indicating an incorporation of europium in the crystal lattice. A dielectric anomaly associated with a structural phase transition was observed in Sr3Sn2O7 at 390 K. Optical measurements performed over a wide temperature range demonstrated a clear correlation between structural transformations in Eu3+-doped Sr2SnO4 and Sr3Sn2O7 and the temperature anomalies of their luminescence spectra, suggesting the efficacy of this method for the determination of subtle phase transformations

    Composition-, temperature- and pressure-induced transitions between high-pressure stabilized perovskite phases of the (1-x)BiFe0.5Sc0.5O3 - xLaFe0.5Sc0.5O3 series

    Get PDF
    Crystal structures of the high-pressure synthesized perovskite phases of the (1-x)BiFe0.5Sc0.5O3-xLaFe0.5Sc0.5O3 (0 ​= ​x ​≤ ​1) system and their temperature and pressure behaviours were studied using laboratory and synchrotron X-ray diffractions as well as neutron diffraction. At room temperature, the as-prepared phases with x ​≤ ​0.05 have an antipolar structure with the Pnma symmetry and with the √2ap ​× ​4ap ​× ​2√2ap superstructure (where ap is the pseudocubic perovskite unit-cell parameter). An incommensurately modulated phase with the Imma(00γ)s00 superspace group is observed for 0.10 ​= ​x ​≤ ​0.33, while a non-polar Pnma phase (√2ap ​× ​2ap ​× ​√2ap) is stable when x ​≥ ​0.34. The antipolar Pnma phase in the as-prepared samples with composition corresponding to x ​= ​0 transforms into the polar Ima2 one via irreversible annealing-caused transformation accompanied by a formation of a high-temperature intermediate polar R3c polymorph, while the antipolar Pnma phase in samples with x ​= ​0.05 is stable until the decomposition temperature. In the solid solutions with 0.10 ​= ​x ​≤ ​0.33, increasing temperature was found to result in a reversible transformation of the Imma(00γ)s00 phase into a non-polar Pnma one. The transition temperature decreases with increasing x. A hydrostatic pressure of few GPa was also shown to induce a reversible Imma(00γ)s00 → Pnma transformation.publishe

    Exchange bias effect in bulk multiferroic BiFe0.5Sc0.5O3

    Get PDF
    Below the Néel temperature, TN ∼ 220 K, at least two nano-scale antiferromagnetic (AFM) phases coexist in the polar polymorph of the BiFe0.5Sc0.5O3 perovskite; one of these phases is a weak ferromagnetic. Non-uniform structure distortions induced by high-pressure synthesis lead to competing AFM orders and a nano-scale spontaneous magnetic phase separated state of the compound. Interface exchange coupling between the AFM domains and the weak ferromagnetic domains causes unidirectional anisotropy of magnetization, resulting in the exchange bias (EB) effect. The EB field, HEB, and the coercive field strongly depend on temperature and the strength of the cooling magnetic field. HEB increases with an increase in the cooling magnetic field and reaches a maximum value of about 1 kOe at 5 K. The exchange field vanishes above TN with the disappearance of long-range magnetic ordering. The effect is promising for applications in electronics as it is large enough and as it is tunable by temperature and the magnetic field applied during cooling.publishe
    corecore