418 research outputs found

    Design of PID Controller for Magnetic Levitation System using Harris Hawks Optimization

    Get PDF
    In most real-time industrial systems, optimal controller implementation is very essential to maintain the output based on the reference input. The controller design problem becomes a complex task when the real-time system model becomes greatly non-linear and unstable. The proposed research aims to design the finest PID controller for the unstable Magnetic Levitation System (MLS) using the Harris Hawks Optimization (HHO) algorithm. The MLS is a highly unstable electro-mechanical system and hence the design of the controller is a complex task. The proposed work implements one Degree of Freedom (1DOF) and 2DOF PID for the system. In this work, the essential controller is designed with a two-step process; (i) Initial optimization search to find the P-controller (Kp) gain to stabilize the system and (ii) Tuning the integral (Ki) and derivative (Kd) gains to reduce the deviation between the reference input and MLS output. The performance of the proposed controller is validated with the servo and regulatory operations and the result of this study confirms that the proposed method helps to get better error value and time domain specifications compared to other available methods

    Topical nano-delivery of 5-fluorouracil: Preparation and characterization of water-in-oil nanoemulsion

    Get PDF
    Purpose: To prepare and characterize a water-in-oil nanoemulsion of 5-fluorouracil (5FU) for enhanced skin penetration.Methods: Nanoemulsions of 5FU were prepared using Capyrol (propylene glycol monocaprylate). Transcutol (highly purified diethylene glycol monoethyl ether) and polyethylene glycol (PEG) 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were subjected to heating - cooling cycling, centrifugation and freeze - thaw cycling to assess their stability. Particle size distribution and zeta potential of the nanoemulsions were evaluated. Furthermore, in vitro and in vivo skin permeation studies were carried out on the formulations in a rat model. Skin irritation studies were also performed on rats to assess the irritation potential of the formulations. The 1 % w/v of Carbopol 934 gel loaded with 1 % 5FU was used as control (FU gel).Results: The results showed that the mean droplet size of the nanoemulsions was ~100 nm with a zeta potential of ± 15. Significant increase in permeability was also observed for the nanoemulsion formulations compared with control. The steady-state flux (Jss), enhancement ratio and permeability coefficient (Kp) for optimized nanoemulsion formulation were significantly (p < 0.05) higher than those of the conventional gel (control). Both in vitro and in vivo skin retention results indicate higher drug release from the nanoemulsion (292.45 μg/cm2) than for control (121.42 μg/cm2). Mean irritation index for the nanoemulsion was significantly lower than for control.Conclusion: The results suggest that a water-in-oil nanoemulsion is safe and can potentially be used to promote skin penetration of 5FU following topical application on the skin for the treatment of some skin diseases.Keywords: Nanoemulsion, Controlled release, 5-Fluorouracil, Skin penetration, Skin irritatio

    Grey Scale Image Multi-Thresholding Using Moth-Flame Algorithm and Tsallis Entropy

    Get PDF
    In the current era, image evaluations play a foremost role in a variety of domains, where the processing of digital images is essential to identify vital information. The image multi-thresholding is a vital image pre-processing field in which the available digital image is enhanced by grouping similar pixel values. Normally, the digital test images are available in RGB/greyscale format and the appropriate processing methodology is essential to treat the images with a chosen methodology. In the proposed approach, Tsallis Entropy (TE) supported multi-level thresholding is planned for the benchmark greyscale imagery of dimension 512x512x1 pixels using a chosen threshold values (T=2,3,4,5). This work suggests the possible Cost Value (CV) that can be considered during the optimization search and the proposed work is executed by considering the maximization of the TE as the CV. The entire thresholding task is executed using Moth-Flame Algorithm (MFA) and the accomplished results are validated based on the image quality measures of various thresholds. The attained result with MFO is better compared to the result of CS, BFO, PSO, and GA

    Wireless Power Transfer for 6G Network Using Monolithic Components on GaN

    Get PDF
    A novel architecture for Wireless Power Transfer (WPT) module usingmonolithic components on GaN is presented in this paper. The design ofsuch a WPT module receives DC power from solar panels, consists ofphotonic power converter (PPC), beamforming antenna, low pass filter,input matching network, rectifier, output matching network and logic circuit(off-chip) which are all integrated on a GaN chip. Our WPT componentsshow excellent simulated performance, for example, our novel beamforming antenna and multiple port wideband antenna have a gain of 8.7 dBand 7.3 dB respectively. We have added a band pass filter to the rectifieroutput which gives two benefits to the circuit. The first one is filteringcircuit will remove unwanted harmonics before collecting DC power andsecond is filter will boost the efficiency of rectifier by optimizing the loadimpedance. Our proposed rectifier has RF-DC conversion efficiency of74% and 67% with beam-forming antenna and multiple port wide bandantenna respectively. Our WPT module is designed to charge a rechargeablebattery (3 V and 1 mA) of a radio module which will be used between twoantennas in future 5G networks. We believe our proposed WPT modulearchitecture is unique and it is applicable to both microwave and millimeterwave systems such as 6G

    ResNet18 Supported Inspection of Tuberculosis in Chest Radiographs With Integrated Deep, LBP, and DWT Features

    Get PDF
    The lung is a vital organ in human physiology and disease in lung causes various health issues. The acute disease in lung is a medical emergency and hence several methods are developed and implemented to detect the lung abnormality. Tuberculosis (TB) is one of the common lung disease and premature diagnosis and treatment is necessary to cure the disease with appropriate medication. Clinical level assessment of TB is commonly performed with chest radiographs (X-ray) and the recorded images are then examined to identify TB and its harshness. This research proposes a TB detection framework using integrated optimal deep and handcrafted features. The different stages of this work include (i) X-ray collection and processing, (ii) Pretrained Deep-Learning (PDL) scheme-based feature mining, (iii) Feature extraction with Local Binary Pattern (LBP) and Discrete Wavelet Transform (DWT), (iv) Feature optimization with Firefly-Algorithm, (v) Feature ranking and serial concatenation, and (vi) Classification by means of a 5-fold cross confirmation. The result of this study validates that, the ResNet18 scheme helps to achieve a better accuracy with SoftMax (95.2%) classifier and Decision Tree Classifier (99%) with deep and concatenated features, respectively. Further, overall performance of Decision Tree is better compared to other classifiers

    Self-nanoemulsifying Drug Delivery Systems of Valsartan: Preparation and In-Vitro Characterization

    Get PDF
    The main objective this study is to prepare and evaluate the selfnanoemulsifying drug delivery (SNEDDS) system in order to achieve a better dissolution rate of a poorly water soluble drug valsartan.  The present research work describes a SNEDDS of valsartan using labrasol, Tween 20 and Polyethylene glycol (PEG) 400. The pseudo-ternary phase diagrams with presence and absence of drug were plotted to check for the emulsification range and also to evaluate the effect of valsartan on the emulsification behavior of the phases. The mixtures consisting of oil (labrasol ) with surfactant (tween20), co-surfactant (PEG 400) were found to be optimum formulations. Prepared formulations were evaluated for its particle size distribution, nanoemulsifying properties, robustness to dilution, self emulsication time, turbidity measurement, drug content and in-vitro dissolution. The optimized formulations  are further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The prepared formulation has a significant improvement in terms of the drug solubility as compared with marketed tablet and pure drug, thus, this greater dissolution of valsartan from formulations could lead to higher absorption and higher oral bioavailability

    Circular Ribbon Antenna Array Design For Imaging Application

    Get PDF
    Our goal is to develop THz module on chip to visualize bone grinding atthe early stage so that arthritis can be visualized and treated early. A criticalcomponent of such module is antenna. A compact 4 by 4 beamformingantenna array for biomedical application is presented in this paper. Weare proposing a novel antenna which is in the form of a circular ribbonshape with a gold patch. Gold material for the patch is used to enhance itsconductivity and to cut down backward radiation. Differential port pin usedto increase the bandwidth. Au-posts are finally used for output connection.The proposed antenna operates over the frequency band from 201 GHz tomore than 228 GHz. Directivity and gain of the proposed antenna are 13dB and 7 dB respectively. This makes it applicable for imaging systemsbecause of the frequency band for biomedical imaging. Index Terms—Beamforming antenna, antenna array, Advanced design system (ADS),Biomedical imaging

    Evaluation of potential bio-control agents on root-knot nematode Meloidogyne incognita and wilt causing fungus Fusarium oxysporum f.sp. conglutinans in vitro

    Get PDF
    Indigenous strains of Trichoderma viride (ITCC No. 6889), Pseudomonas fluorescens (ITCC No. B0034) and Purpureocillium lilacinum (ITCC No.6887) were isolated from undisturbed forest eco-system of Southern India. These three bio-mediators were evaluated for their antagonism towards root knot nematode, Meloidogyne incognita and Fusarium oxysporum f.sp. conglutinans in vitro. Cell free culture filtrate of these strains significantly inhibited the egg hatching and caused juvenile (J2) mortality of M. incognita at 25, 50, 75 and 100%  concentrations. Maximum inhibition in egg hatching and juvenile mortality were recorded in P. lilacinum as 94.21 and 91.28%, respectively after 120 h. It was followed by T. viride and P. fluorescens which recorded 92.72 and 91.46% and 89.12 and 90.14% inhibition in egg hatching and juvenile mortality, respectively after 120 h. Antagonism of T. viride on F. oxysporum was recorded maximum on the 5th day as 45.82%. Similarly, the antagonism on the 5th day for both the bioagents of P. lilacinum and P. fluorescens were recorded as 45.26 and 44.19%, respectively.Key words: Biocontrol agents, culture filtrate, Fusarium oxysporum, Meloidogyne incognita
    • …
    corecore