104 research outputs found

    Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force

    Get PDF
    Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell’s exterior to its force generation machinery. Force-dependent vinculin–talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork

    Screening of glycoside hydrolases and ionic liquids for fibre modification

    Get PDF
    BACKGROUNDThis study elaborates the possibility to apply combined ionic liquid (IL) and enzyme treatments for pulp fibre modification. The approach involves swelling of fibre surfaces with IL followed by enzymatic modification of the disrupted fibre surface using carbohydrate active enzymes. RESULTSThe capacity of seven cellulose-dissolving or cellulose-swelling ionic liquids to swell pulp fibres was compared. In addition, thirteen cellulases and five xylanases were screened for their IL tolerance, which determines their applicability in combined or sequential IL-enzyme treatments of fibres. Among the studied ionic liquids, 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DMP) and 1,3-dimethylimidazolium dimethylphosphate ([DMIM]DMP) had the strongest effect on fibre swelling. These solvents were also found to be the least inactivating for the studied enzymes. CONCLUSIONEnzyme compatibility and cellulose-dissolving capability are not two conflicting properties of an ionic liquid. (c) 2017 Society of Chemical IndustryPeer reviewe

    Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed eucalyptus globulus wood

    Get PDF
    By-products resulting from lignocellulosics pretreatment affect the digestibility of resulting whole slurries, but this can be minimized by additives supplementation. In this work, a family 3 carbohydrate-binding module (CBM3), recombinantly produced from Escherichia coli, was used as additive in the enzymatic hydrolysis of the whole slurry from autohydrolyzed Eucalyptus globulus wood (EGW). At the higher dosage used (30 mg/gsolids), CBM3 led to an increase in glucose yield from 75 to 89%. A similar result was obtained for bovine serum albumin (BSA) (11% increase), which has a well-documented additive effect. CBM3 had no effect on the non-productive binding of enzymes, since it could not bind to EGW lignin, while it rapidly bound to cellulose, as shown by fluorescence microscopy. CBM3 is a valid additive for enhanced lignocellulosic saccharification and a valuable alternative to costly additives (e.g. polyethylene glycol) as it can be affordably produced from heterologous bacterium, thus contributing to more cost-efficient biomass valorization bioprocesses.This work was developed under the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte. The research leading to the reported results has received funding from Fundação para a Ciência e a Tecnologia (FCT) through the project MultiBiorefinery (POCI-01–0145-FEDER-016403) and through grants to C. Oliveira (SFRH/BPD/110640/2015) and D. Gomes (SFRH/BD/88623/2012).info:eu-repo/semantics/publishedVersio

    Assessing the potential for sea-based macroalgae cultivation and its application for nutrient removal in the Baltic Sea

    Get PDF
    Marine eutrophication is a pervasive and growing threat to global sustainability. Macroalgal cultivation is a promising circular economy solution to achieve nutrient reduction and food security. However, the location of production hotspots is not well known. In this paper the production potential of macroalgae of high commercial value was predicted across the Baltic Sea region. In addition, the nutrient limitation within and adjacent to macroalgal farms was investigated to suggest optimal site-specific configuration of farms. The production potential of Saccharina latissima was largely driven by salinity and the highest production yields are expected in the westernmost Baltic Sea areas where salinity is >23. The direct and interactive effects of light availability, temperature, salinity and nutrient concentrations regulated the predicted changes in the production of Ulva intestinalis and Fucus vesiculosus. The western and southern Baltic Sea exhibited the highest farming potential for these species, with promising areas also in the eastern Baltic Sea. Macroalgal farming did not induce significant nutrient limitation. The expected spatial propagation of nutrient limitation caused by macroalgal farming was less than 100–250 m. Higher propagation distances were found in areas of low nutrient and low water exchange (e.g. offshore areas in the Baltic Proper) and smaller distances in areas of high nutrient and high water exchange (e.g. western Baltic Sea and Gulf of Riga). The generated maps provide the most sought-after input to support blue growth initiatives that foster the sustainable development of macroalgal cultivation and reduction of in situ nutrient loads in the Baltic Sea.</p

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.Peer reviewe
    corecore