1,885 research outputs found

    Efficiency and Pressure Loss Characteristics of an Ultra-Compact Combustor with Bulk Swirl

    Get PDF
    Research was conducted on a novel combustor design using a highly centrifugal loaded circumferential cavity to enhance flame speeds and lower mixing time to lower overall combustion time achieving improved efficiency and stability. This Ultra-Compact Combustor (UCC) is fed air with a bulk swirl, resembling gas leaving a compressor without the final set of compressor guide vanes to straighten the flow, at higher than normal Mach numbers for a combustor. The larger Mach numbers in the combustor do not cause a total pressure loss in excess of what Rayleigh theory would dictate for the given heat addition taking place within the combustor. Tests were conducted on the UCC with a clockwise or counter-clockwise swirl direction in the circumferential cavity using JP-8 and natural gas derived Fischer-Tropsch synthetic jet fuel with each direction. The results for lean blow out stability, combustion efficiency, and emissions proved that the best configuration uses counterclockwise swirl. The two fuels performed equally with no noticeable differences between JP-8 and the synthetic Fischer-Tropsch fuel

    Generation of four-partite GHZ and W states by using a high-finesse bimodal cavity

    Full text link
    We propose two novel schemes to engineer four-partite entangled Greenberger-Horne-Zeilinger (GHZ) and W states in a deterministic way by using chains of (two-level) Rydberg atoms within the framework of cavity QED. These schemes are based on the resonant interaction of the atoms with a bimodal cavity that simultaneously supports, in contrast to a single-mode cavity, two independent modes of the photon field. In addition, we suggest the schemes to reveal the non-classical correlations for the engineered GHZ and W states. It is shown how these schemes can be extended in order to produce general N-partite entangled GHZ and W states.Comment: RevTex file, 13 pages, 7 figures, corrected typo

    Clinical exercise testing in children and adolescents with cystic fibrosis.

    Get PDF
    ArticleThis is the author version of an article published in Pediatric Physical Therapy, 2009, Vol. 21, Iss. 3, pp. 275-281. The final published version is available via: http://dx.doi.org/10.1097/PEP.0b013e3181b15445PURPOSE: To review the most common field and laboratory exercise tests available for children and adolescents with cystic fibrosis (CF). METHODS: Relevant studies for this review were identified by electronic search of Medline and PubMed databases between the years 1958 and 2008. The bibliographies of all accessed publications were also searched. Key descriptors were cystic fibrosis, exercise testing, aerobic fitness, children, and adolescents. RESULTS: Five field tests were selected for presentation, including discussion of their strengths and weaknesses. Laboratory tests measuring aerobic and anaerobic responses to exercise in children with CF were also selected for presentation and discussed along with a summary of safety considerations for exercise testing of children with CF. CONCLUSION: Exercise testing is regarded an important prognostic tool in CF care. However, despite its beneficial effects, clinical exercise testing seems underused. Clinicians and their staff should encourage patients with CF to be physically active and recommend exercise testing annually

    An efficient quantum circuit analyser on qubits and qudits

    Full text link
    This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates

    Polarization correlations in the two--photon decay of hydrogen--like ions

    Full text link
    Polarization properties of the photons emitted in the two-photon decay of hydrogen-like ions are studied within the framework of the density matrix and second-order perturbation theory. In particular, we derive the polarization correlation function that gives the probability of the (two-photon) coincidence measurement performed by polarization-sensitive detectors. Detailed calculations of this function are performed for the 2s1/2→1s1/22s_{1/2} \to 1s_{1/2} transition in neutral hydrogen as well as Xe53+^{53+} and U91+^{91+} ions. The obtained results allow us to understand the influence of relativistic and non-dipole effects on the polarization correlations in the bound-bound two-photon transitions in heavy ions

    Simulation of n-qubit quantum systems. II. Separability and entanglement

    Get PDF
    Abstract Studies on the entanglement of n-qubit quantum systems have attracted a lot of interest during recent years. Despite the central role of entanglement in quantum information theory, however, there are still a number of open problems in the theoretical characterization of entangled systems that make symbolic and numerical simulation on n-qubit quantum registers indispensable for present-day research. To facilitate the investigation of the separability and entanglement properties of n-qubit quantum registers, here we present a revised version of the FEYNMAN program in the framework of the computer algebra system MAPLE. In addition to all previous capabilities of this MAPLE code for defining and manipulating quantum registers, the program now provides various tools which are necessary for the qualitative and quantitative analysis of entanglement in n-qubit quantum registers. A simple access, in particular, is given to several algebraic separability criteria as well as a number of entanglement measures and related quantities. As in the previous version, symbolic and numeric computations are equally supported. T. Radtke, S. Fritzsche / Computer Physics Communications 175 (2006) 145-166 communications or quantum cryptography. Up to the present, however, the multipartite entanglement of n-qubit systems has remained largely unexplored owing to the exponential growth of complexity with the number of qubits involved. Program summary Method of solution: Using the computer algebra system MAPLE, a set of procedures has been developed which supports the definition and manipulation of n-qubit quantum registers and quantum logic gates [T. Radtke, S. Fritzsche, Comput. Phys. Comm. 173 Restrictions onto the complexity of the problem: The present version of the program facilitates the setup and the manipulation of quantum registers by means of (predefined) quantum logic gates; it now also provides the tools for performing a symbolic and/or numeric analysis of the entanglement for the quantum states of such registers. Owing to the rapid increase in the computational complexity of multi-qubit systems, however, the time and memory requirements often grow rapidly, especially for symbolic computations. This increase of complexity limits the application of the program to about 6 or 7 qubits on a standard single processor (Pentium 4 with 2 GHz or equivalent) machine with 1 GB of memory. Unusual features of the program: The FEYNMAN program has been designed within the framework of MAPLE for interactive (symbolic or numerical) simulations on n-qubit quantum registers with no other restriction than given by the memory and processor resources of the computer. Whenever possible, both representations of quantum registers in terms of their state vectors and/or density matrices are equally supported by the program. Apart from simulating quantum gates and quantum operations, the program now facilitates also investigations on the separability and the entanglement properties of quantum registers

    Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine KrasG12D-induced skin carcinogenesis in vivo

    Get PDF
    Background The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic KrasG12D mice with ablation of Notch1 and/or Notch2. Methodology/Principal Findings Surprisingly, mice with activated KrasG12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. Conclusions/Significance Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors

    Exchange Instabilities in Semiconductor Double Quantum Well Systems

    Full text link
    We consider various exchange-driven electronic instabilities in semiconductor double-layer systems in the absence of any external magnetic field. We establish that there is no exchange-driven bilayer to monolayer charge transfer instability in the double-layer systems. We show that, within the unrestricted Hartree-Fock approximation, the low density stable phase (even in the absence of any interlayer tunneling) is a quantum ``pseudospin rotated'' spontaneous interlayer phase coherent spin-polarized symmetric state rather than the classical Ising-like charge-transfer phase. The U(1) symmetry of the double quantum well system is broken spontaneously at this low density quantum phase transition, and the layer density develops quantum fluctuations even in the absence of any interlayer tunneling. The phase diagram for the double quantum well system is calculated in the carrier density--layer separation space, and the possibility of experimentally observing various quantum phases is discussed. The situation in the presence of an external electric field is investigated in some detail using the spin-polarized-local-density-approximation-based self-consistent technique and good agreement with existing experimental results is obtained.Comment: 24 pages, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng/preprint/ct.uu/ . Revised final version to appear in PR

    ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM

    Get PDF
    Two-way model coupling is important for representing the mutual interactions and feedbacks between atmosphere and ocean dynamics. This work presents the development of the two-way coupled model system ICONGETM, consisting of the atmosphere model ICON and the ocean model GETM. ICONGETM is built on the latest NUOPC coupling software with flexible data exchange and conservative interpolation via ESMF exchange grids. With ICON providing a state-of-the-art kernel for numerical weather prediction on an unstructured mesh and GETM being an established coastal ocean model, ICONGETM is especially suited for high-resolution studies. For demonstration purposes the newly developed model system has been applied to a coastal upwelling scenario in the central Baltic Sea
    • …
    corecore