11 research outputs found

    Computation of bounds for anchor problems in limit analysis and decomposition techniques

    Get PDF
    Numerical techniques for the computation of strict bounds in limit analyses have been developed for more than thirty years. The efficiency of these techniques have been substantially improved in the last ten years, and have been successfully applied to academic problems, foundations and excavations. We here extend the theoretical background to problems with anchors, interface conditions, and joints. Those extensions are relevant for the analysis of retaining and anchored walls, which we study in this work. The analysis of three-dimensional domains remains as yet very scarce. From the computational standpoint, the memory requirements and CPU time are exceedingly prohibitive when mesh adaptivity is employed. For this reason, we also present here the application of decomposition techniques to the optimisation problem of limit analysis. We discuss the performance of different methodologies adopted in the literature for general optimisation problems, such as primal and dual decomposition, and suggest some strategies that are suitable for the parallelisation of large three-dimensional problems. The propo sed decomposition techniques are tested against representative problems.Peer ReviewedPreprin

    Decomposition techniques in computational limit analysis

    Get PDF
    Numerical techniques for the computation of strict bounds in limit analyses have been developed for more than thirty years. The efficiency of these techniques have been substantially improved in the last ten years, and have been successfully applied to academic problems, foundations and excavations. We here extend the theoretical background to problems with anchors, interface conditions, and joints. Those extensions are relevant for the analysis of retaining and anchored walls, which we study in this work. The analysis of three-dimensional domains remains as yet very scarce. From the computational standpoint, the memory requirements and CPU time are exceedingly prohibitive when mesh adaptivity is employed. For this reason, we also present here the application of decomposition techniques to the optimisation problem of limit analysis. We discuss the performance of different methodologies adopted in the literature for general optimisation problems, such as primal and dual decomposition, and suggest some strategies that are suitable for the parallelisation of large three-dimensional problems. The proposed decomposition techniques are tested against representative problems.Postprint (published version

    AAR-based decomposition method for lower-bound limit analysis

    Get PDF
    Despite the recent progress in optimisation techniques, finite-element stability analysis of realistic three-dimensional problems is still hampered by the size of the resulting optimisation problem. Current solvers may take a prohibitive computational time, if they give a solution at all. The possible remedies to this are the design of adaptive de-remeshing techniques, decomposition of the system of equations or of the optimisation problem. This paper concentrates on the last approach, and presents an algorithm especially suited for limit analysis. Optimisation problems in limit analysis are in general convex but non-linear. This fact renders the design of decomposition techniques specially challenging. The efficiency of general approaches such as Benders or Dantzig–Wolfe is not always satisfactory, and strongly depends on the structure of the optimisation problem. This work presents a new method that is based on rewriting the feasibility region of the global optimisation problem as the intersection of two subsets. By resorting to the averaged alternating reflections (AAR) method in order to find the distance between the sets, the optimisation problem is successfully solved in a decomposed manner. Some representative examples illustrate the application of the method and its efficiency with respect to other well-known decomposition algorithm

    AAR-based decomposition method for lower-bound limit analysis

    Get PDF
    Despite the recent progress in optimisation techniques, finite-element stability analysis of realistic three-dimensional problems is still hampered by the size of the resulting optimisation problem. Current solvers may take a prohibitive computational time, if they give a solution at all. The possible remedies to this are the design of adaptive de-remeshing techniques, decomposition of the system of equations or of the optimisation problem. This paper concentrates on the last approach, and presents an algorithm especially suited for limit analysis. Optimisation problems in limit analysis are in general convex but non-linear. This fact renders the design of decomposition techniques specially challenging. The efficiency of general approaches such as Benders or Dantzig–Wolfe is not always satisfactory, and strongly depends on the structure of the optimisation problem. This work presents a new method that is based on rewriting the feasibility region of the global optimisation problem as the intersection of two subsets. By resorting to the averaged alternating reflections (AAR) method in order to find the distance between the sets, the optimisation problem is successfully solved in a decomposed manner. Some representative examples illustrate the application of the method and its efficiency with respect to other well-known decomposition algorithms.Peer ReviewedPostprint (author's final draft

    AAR-based decomposition algorithm for non-linear convex optimisation

    No full text
    n this paper we present a method for decomposing a class of convex nonlinear programmes which are frequently encountered in engineering plastic analysis. These problems have second-order conic memberships constraints and a single complicating variable in the objective function. The method is based on finding the distance between the feasible sets of the decomposed problems, and updating the global optimal value according to the value of this distance. The latter is found by exploiting the method of averaged alternating reflections, which is here adapted to the optimisation problem at hand. The method is specially suited for non-linear problems and as our numerical results show, its convergence is independent of the number of variables of each sub-domain. We have tested the method with an illustrative example and with problems that have more than 10,000 variables.Peer Reviewe

    AAR-based decomposition method for lower-bound limit analysis

    No full text
    Despite the recent progress in optimisation techniques, finite-element stability analysis of realistic three-dimensional problems is still hampered by the size of the resulting optimisation problem. Current solvers may take a prohibitive computational time, if they give a solution at all. The possible remedies to this are the design of adaptive de-remeshing techniques, decomposition of the system of equations or of the optimisation problem. This paper concentrates on the last approach, and presents an algorithm especially suited for limit analysis. Optimisation problems in limit analysis are in general convex but non-linear. This fact renders the design of decomposition techniques specially challenging. The efficiency of general approaches such as Benders or Dantzig–Wolfe is not always satisfactory, and strongly depends on the structure of the optimisation problem. This work presents a new method that is based on rewriting the feasibility region of the global optimisation problem as the intersection of two subsets. By resorting to the averaged alternating reflections (AAR) method in order to find the distance between the sets, the optimisation problem is successfully solved in a decomposed manner. Some representative examples illustrate the application of the method and its efficiency with respect to other well-known decomposition algorithms.Peer Reviewe

    Computation of bounds for anchor problems in limit analysis and decomposition techniques

    No full text
    Numerical techniques for the computation of strict bounds in limit analyses have been developed for more than thirty years. The efficiency of these techniques have been substantially improved in the last ten years, and have been successfully applied to academic problems, foundations and excavations. We here extend the theoretical background to problems with anchors, interface conditions, and joints. Those extensions are relevant for the analysis of retaining and anchored walls, which we study in this work. The analysis of three-dimensional domains remains as yet very scarce. From the computational standpoint, the memory requirements and CPU time are exceedingly prohibitive when mesh adaptivity is employed. For this reason, we also present here the application of decomposition techniques to the optimisation problem of limit analysis. We discuss the performance of different methodologies adopted in the literature for general optimisation problems, such as primal and dual decomposition, and suggest some strategies that are suitable for the parallelisation of large three-dimensional problems. The propo sed decomposition techniques are tested against representative problems

    Decomposition techniques in computational limit analysis

    No full text
    Numerical techniques for the computation of strict bounds in limit analyses have been developed for more than thirty years. The efficiency of these techniques have been substantially improved in the last ten years, and have been successfully applied to academic problems, foundations and excavations. We here extend the theoretical background to problems with anchors, interface conditions, and joints. Those extensions are relevant for the analysis of retaining and anchored walls, which we study in this work. The analysis of three-dimensional domains remains as yet very scarce. From the computational standpoint, the memory requirements and CPU time are exceedingly prohibitive when mesh adaptivity is employed. For this reason, we also present here the application of decomposition techniques to the optimisation problem of limit analysis. We discuss the performance of different methodologies adopted in the literature for general optimisation problems, such as primal and dual decomposition, and suggest some strategies that are suitable for the parallelisation of large three-dimensional problems. The proposed decomposition techniques are tested against representative problems
    corecore