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Abstract

Despite recent progress in the optimisation techniques, finite element sta-
bility analysis of realistic three-dimensional (3D) problems is still hampered by
the size of the resulting optimisation problem. Current solvers may take a pro-
hibitive computational time, if they give a solution at all. Possible remedies to
this are the design of adaptive de-remeshing techniques, decomposition of the
system of equations, or the decomposition of the optimisation problem. In this
paper we concentrate on the last approach, and present an algorithm especially
suited for limit analysis.

The optimisation problems in limit analysis are convex but non-linear. This
fact renders the design of decomposition techniques specially challenging. The
efficiency of general approaches such as Benders or Dantzig-Wolfe is not always
satisfactory, and strongly depends on the structure of the optimisation problem.
We here present a new method that is based on rewriting the feasibility region
of the global optimisation problem as the intersection of two subsets. By resort-
ing to the Averaged Alternate Reflections (AAR) in order to find the distance
between the sets, we achieve to solve the optimisation problem in a decomposed
manner. We illustrate the method with some representative problems, and com-
ment its efficiency with respect to other well-known decomposition algorithms.

1 Introduction

Computational limit analysis aims to accurately compute the bearing capacity
of structures. Mathematically, this can be stated as numerically solving the
following maximisation (static) problem:

λopt = max
λ,σ

λ

s.t.∇ · σ + λf = 0, ∀x ∈ Ω

σn = λg, ∀x ∈ Γn

JσnK = 0, ∀x ∈ Γi

σ ∈ B

(1)

Here, Ω is the domain of the body, while σ, f and g are respectively the
stress tensor, the volumetric loads, and the boundary loads. The conditions
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in the optimisation problem (1) correspond to the equilibrium conditions of a
domain Ω, with applied boundary loads g on the boundary Γn ⊆ ∂Ω, and with
some potential discontinuities Γi. The set B represents the admissible domain
for the plasticity criteria of the material.

Different discretisations of the optimisation problem in (1) yield different
static and kinematic formulations that give respectively lower [LS02, LSKH05]
or upper bounds [KLS07] of the exact optimal load factor λopt, and the two
type of solutions may be in turn combined for designing remeshing strategies
[MBHP09]. The method has been well studied and applied for instance in the
analysis of anchors [MS10, MLH13], masonry structures [GSP10] or inhomoge-
neous materials [Bd14]. We will here focus on the lower bound optimisation
problem, although the ideas described below can be also applied to other for-
mulations. By using a piecewise linear finite element discretissation of the stress
variable σ, and after using a linear transformation of the stresses, the analyti-
cal problem in (1) can be turned into the following finite optimisation problem
[LS02, MBHP09]:

λ∗ = max
λ,x

λ

s.t.Ax+ λf = b

x ∈ K

(2)

The vector x includes all the nodal components of the stress-like variable x,
which is a linear transformation of the stresses σ, in such a manner that the new
admissible set K is formed by the products of second order cones (SOCs), that
is K = K1× . . .KN , with Ki = {y ∈ R

n|y1 ≥
√

y22 + . . .+ y2n}. The membership
constraint x ∈ K can be then easily dealt with by using standard optimisation
software such as SDPT3 [TTT06], Mosek [MOS05] or Sonic [Lya04]. The static
formulations solved here are such that the optimum value of the optimisation
problem in (2), denoted by λ∗, is a lower bound of the exact solution in (1), i.e.
λ∗ ≤ λopt.

Due to the size of the resulting optimisation problem in (2), limit analyses
on three dimensional domains are scarce. Despite recent progress in the optimi-
sation solvers, it is still very much desirable to design new methods that allow
to reduce the cost of the solution process. One of the possible remedies is to
decompose the global problem in (2) into smaller sub-problems, which can be
solved at a much lower cost. This idea is not new, and has already been used
by [CT94, Kan83] using proximal-point decomposition, and by [PLP09] and
[KPSP10] using overlapping domains. We note that no optimal decomposition
strategy exists in the optimisation literature, and that the standard techniques
such as Benders [Ben62, Geo72], Dantzig-Wolfe [CCMGB06, DW60], or primal
and dual decomposition [BXMM07] require an exceeding number of iterations
for the non-linear problem in (2) [MRLH13].

The proposed algorithm is based on computing the distance between two
feasilibty sets, which we find by using the method of Averaged Alternating
Reflections (AAR). We present first in Section 2.1 this method, which we will
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Figure 1: Illustrtion of the AAR algorithm for finding the distance between the
two sets Z and W .

relate to our decomposition algorithm in Section 2.2. Section 2.3 describes the
method, Section 3 applies it to some representative examples, and Section 4
discusses the main results.

2 AAR-based decomposition algorithm

2.1 AAR algorithm

The AAR algorithm consists on finding the distance between two sets Z and W
[BC10]. It is clear that if the distance between the sets W and Z, denoted by
d(W,Z), is equal to zero, and the sets are compact, there is a common element
t̄ ∈ Z ∩W . The AAR algorithm searches for such element t̄ by computing the
fix points of the following iterative process:

tn+1 = T(tn), with T =
RWRZ + I

2
. (3)

The transformations RW = 2PW − I and RZ = 2PZ − I are the reflections
on the sets W and Z, with PW and PZ the projections onto the same sets,
respectively. Figure 1 illustrates the meaning of the transformation T,R and P.
It is demonstrated in [BC10], that when d(W,Z) = 0, the iterative process in (3)
converges towards a fix point such that t̄ = T(t̄) and t̄ ∈ Z∩W . And conversely,
when d(W,Z) > 0, the algorithm diverges, giving a series of increasing values
αn = ||tn+1 − tn||.

2.2 Decomposition of lower bound optimisation problem

We propose here a decomposition method which splits the domain Ω into two
non-overlapping domains, Ω1 and Ω2, with Ω = Ω1∪Ω2. The global optimisation
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problem in (2) is also rewritten into the following partitioned form:

λ∗ = max
λ,x1,x2

λ

s.t.A1x1 + λf1 = b1

A2x2 + λf2 = b2

B1x1 +B2x2 = 0

x1 ∈ K1,x2 ∈ K2

where x1 ∈ Ω1 and x2 ∈ Ω2 are the stress-like nodal variables in each domain.
It will be convenient to rewrite the complicating constraint B1x1 + B2x2 = 0

into two constraints, and use a new complicating variable t in such a manner
that the optimisation problem above now reads

λ∗ = max
λ,x1,x2,t

λ

s.t.A1x1 + λf1 = b1

A2x2 + λf2 = b2

B1x1 = t

B2x2 = −t

x1 ∈ K1,x2 ∈ K2

(4)

The new variable t corresponds to the nodal tractions at the common bound-
ary Ω1 ∩Ω2, as illustrated in Figure 2. This variable allows us to decompose in
turn the optimisation problem in (4) into the following master problem

λ∗ = max
λ

λ

s.t. d(Z(λ),W (λ)) = 0
(5)

where Z(λ) and W (λ) are the following feasible sets:

W (λ) = {t|A1x1 + λf1 = b1,B1x1 = t,x1 ∈ K1}

Z(λ) = {t|A2x2 + λf2 = b2,B2x2 = −t,x2 ∈ K2}
(6)

In mechanical terms, W (λ) and Z(λ) represent the sets of tractions at the
boundary Ω1∩Ω2 that are in equilibrium with the given load factor λ, and with
admissible stresses x1 ∈ K1 and x2 ∈ K2, respectively. If the value of λ = λ̄ is
larger than λ∗, that is, when λ̄ is not globally feasible, then no common traction
field t at the boundary can be found that is in equilibrium with admissible
stresses x1 and x2, and with the load factor λ̄. Furthermore, it may occur that
at least one of the sets W (λ̄) or Z(λ̄) is empty since no equilibrated traction
field can be found for the load factor λ̄. On the other hand, if for a given value
λ = λ, the intersection W (λ) ∩ Z(λ) is non-empty, then the value λ is globally
feasible, and λ ≤ λ∗.

Figure 3 shows schematically the sets W (λ) and Z(λ) on the (λ, t)-plane,
and the situations when λ < λ∗ and λ > λ∗. In each case it can be observed
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Figure 2: Partitioning of the domain Ω (left) into domains Ω1 and Ω2 (right).
Variable t are the tractions at the common boundary Ω1 ∩ Ω2.

Figure 3: Illustration of the feasibility sets Z(λ) and W (λ) as a function of λ,
and the optimal value λ∗

that:
{

λ ≤ λ∗ ⇔ W (λ) ∩ Z(λ) 6= ∅ ⇔ d(W (λ), Z(λ)) = 0

λ > λ∗ ⇔ W (λ) ∩ Z(λ) = ∅ ⇔ d(W (λ), Z(λ)) > 0
(7)

These implications justify the form of the optimisation problem given in (5),
which in mechanical terms read: find the maximum load factor λ∗ such that
the two domains Ω1 and Ω2 are in equilibrium with a common traction field t∗,
and such that the stress variables x1 and x2 are plastically admissible and in
equilibrium with t∗.

2.3 Master problem and sub-problems

In view of the previous results, the following master problem for solving the
optimal problem in (5) is proposed:

• Initialise: find λ0
lb < λ∗ and λ0

ub > λ∗. Set λ0 = 1
2 (λ

0
lb + λ0

ub) and k = 0.

• Step 1: Find the distance αk = d(W (λk), Z(λk)).

• Step 2:
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2.1 If αk = 0: Set λk+1
lb = λk and λk+1

ub = λk
ub.

2.2 If αk > 0: Set λk+1
lb

= λk
lb and λk+1

ub
= λk.

• Step 3: Compute ǫλ = λk+1
lb − λk+1

lb .

3.1 If ǫλ < tol : STOP.

3.2 If ǫλ ≥ tol : λk+1 =
(

λk+1
lb + λk+1

ub

)

/2, set k = k + 1 and GO TO
Step 1.

Step 1 requires the computation of the distance αk = d(W (λk), Z(λk)). This
step will be completed by resorting to the AAR algorithm presented in Section
2.1, and will be identified as the sub-problem. In fact, since we are not interested
in computing the actual value of the distance, but just in detecting whether αk

is positive, the following sub-problem is proposed:

• Step 1.1. Set λ = λk, tk0 = tk−1, n = 0

• Step 1.2. Solve Sub-problem 1 in (8). Obtain d1
n and set tkn = tkn + 2d1

n.

• Step 1.3. Solve Sub-problem 2 in (9). Obtain d2
n and set tkn = tkn + 2d2

n.

• Step 1.4. Set βn = ||d1
n||+ ||d2

n|| and αn = ||d1
n + d2

n||.

If βn > βn+1 or αn < ǫ1α

– 1.4.1. Set αk = 0. STOP

elseif βn+1 > βn and ∆αn < ǫ2α

– 1.4.2. Set αk > 0. STOP

else

– 1.4.3. Set tkn =
t
k

n+1+t
k

n

2 , n = n+ 1, GO TO Step 1.2

Step 1.1. consists on the initialisation of the algorithm. The initial lower
and upper bounds, λ0

lb and λ0
ub, can be computed by setting λ0

lb = 0, and
λ0
ub = min(λ0

1, λ
0
2), with λ0

1 and λ0
2 the optimal values of λ when the global

problem is solved with only the constraints of domain Ω1 and Ω2, respectively.
The sub-problems 1 and 2, in Steps 1.2 and 1.3, are respectively given by

min
x1,d1

||d1||

s.t.A1x1 + λf1 = b1

B1x1 − d1 = tn

x1 ∈ K1

(8)
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Figure 4: Unstructured mesh for Problem 1 (nelem=402)

and

min
x2,d2

||d2||

s.t.A2x1 + λf2 = b2

B2x2 + d2 = −tn − 2d1
n

x2 ∈ K2

(9)

which give the optimal solutions d1
n and d2

n. Each one of these problems has
the structure of a second order cone program (SOCP), which can be solved by
using standard optimisation packages. It can be verified that the sub-problems
in (8) and (9) are in fact the implementations of the AAR algorithm for the sets
W (λ) and Z(λ) defined in (6).

The stopping criteria in step 1.4. aims to detect, before an accurate value of
αk is computed, whether the AAR method is converging towards a fixed value
(and αn tends to zero), or diverging (βn is increasing and αn converges towards a
non-zero value). In step 1.4.1. the value of λk is detected as a lower bound, while
in 1.4.2. λk is detected as an upper bound. In Step 1.4.3 no identification can
be said yet, and the iterative process (n−iterations) continues. The convergence
of the algorithm is demonstrated in [RM] for general non-linear problems. We
will next show its performance for some illustrative examples.

3 Results

Now we apply the AAR-based decomposition method for a rectangular domain
depicted in Figure 4, and for three different number of elements. The number
of elements considered (Nelem) are given in Table 1. The third column in the
table also shows the accumulated number of iterations in the sub-problems, that
is, the sum of the nk sub-iterations for each master iteration k. The problem
considers a fix left boundary, and the right boundary with an applied nominal
traction equal to g = {1, 1}T . The domain has been partitioned horizontally,
although it has been numerically tested that the results shown here do not
depend on the actual partitioning and regularity of the mesh.
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Problem Nelem
∑

k=1 nk

1 402 71
2 648 63
3 936 66

Table 1: Size and total number of sub-iterations of each problem

Problem 1
λ∗ = 0.50280

k λk−1
lb λk−1

ub λk nk ∆λk−1

1 0.0 0.704068 0.352034 2 0.7041
2 0.352034 0.704068 0.528051 31 0.3520
3 0.352034 0.528051 0.440043 2 0.1760
4 0.440043 0.528051 0.484047 2 0.0880
5 0.484047 0.528051 0.506049 11 0.0440
6 0.484047 0.506049 0.495048 2 0.0220
7 0.495048 0.506049 0.500548 2 0.0110
8 0.495048 0.503299 0.503299 9 0.0083
9 0.501924 0.503299 0.501924 2 0.0014
10 0.502611 0.503299 0.502611 2 0.0007
11 0.502611 0.502955 0.502955 4 0.0003
12 0.502783 0.502955 0.502783 2 0.0002
− 0.502783 0.502955 λ∗ ≈ 0.502869 71 0.0002

Table 2: Numerical results of Problem 1

The optimal solution λ∗ for each problem has been computed solving the
global problem in (2) with SONIC solver [Lya04].

The numerical results of Problems 1-3 are reported in Table 2-4, respec-
tively, where k indicates the number of master iterations, and nk is the number
of iterations taken by the sub-problem at each master iteration k. The sec-
ond and third columns indicate the highest lower bound and the lowest upper
bound at each master iteration, in such a way that λ∗ ∈ [λk−1

lb , λk−1
ub ], and

λk =
(λk−1

lb
+λ

k−1

ub
)

2 . Numbers in bold font indicate that λk is an upper bound,

and ∆λk−1 = λk−1
ub − λk−1

lb . In all our numerical tests, we have used the values
(tol, ǫ1α, ǫ2α) = (5E − 4, 1E − 4, 1E − 4). It can be observed on the tables, and
the plot in Figure 5, that whenever λk is an upper bound, the number of sub-
iterations increases notoriously. Further work in detecting such upper bounds
with less iterations is currently being undertaken.

4 Conclusions

We have presented and algorithm that solves the optimisation problem in limit
analysis. The method explots the structure of the optimisation problem: a
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Problem 2
λ∗ = 0.50371

k λk−1
lb λk−1

ub λk nk ∆λk−1

1 0.0 0.745779 0.372889 2 0.7458
2 0.372889 0.745779 0.559334 21 0.3729
3 0.372889 0.559334 0.466112 2 0.1864
4 0.466112 0.559334 0.512723 9 0.0932
5 0.466112 0.512723 0.489417 2 0.0466
6 0.489417 0.512723 0.501070 2 0.0233
7 0.489417 0.506897 0.506897 7 0.0175
8 0.489417 0.503983 0.503983 9 0.0146
9 0.502527 0.503983 0.502527 2 0.0015
10 0.503255 0.503983 0.503255 2 0.0007
11 0.503619 0.503983 0.503619 2 0.0004
12 0.503619 0.503801 0.503801 3 0.0002
− 0.503619 0.503801 λ∗ ≈ 0.503710 63 0.0002

Table 3: Numerical results of Problem 2

Problem 3
λ∗ = 0.50507

k λk−1
lb λk−1

ub λk nk ∆λk−1

1 0.0 0.705498 0.352749 2 0.7055
2 0.352749 0.705498 0.529123 29 0.3527
3 0.352749 0.529123 0.440936 2 0.1764
4 0.440936 0.529123 0.485030 2 0.0882
5 0.485030 0.529123 0.507077 11 0.0441
6 0.485030 0.507077 0.496053 2 0.0220
7 0.496053 0.507077 0.501565 2 0.0110
8 0.501565 0.507077 0.504321 2 0.0055
9 0.504321 0.507077 0.505699 7 0.0028
10 0.504321 0.505699 0.505010 2 0.0014
11 0.505010 0.505699 0.505354 3 0.0007
12 0.505010 0.505354 0.505182 2 0.0003
− 0.505010 0.505182 λ∗ ≈ 0.505096 66 0.0002

Table 4: Numerical results of Problem 3
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Figure 5: Evolution of the load factor for each sub-iteration in Problem 1.

single scalar on the objective function.
Assuming that the cost of the optimisation problem increases approximately

with in the order of nelem2, the total number of iterations obtained of the de-
composed algorithm is still not competitive, although the number of iterations
that other standard procedures would require, such as Bendres or dual decom-
position, has been recuded by one order of magnitude [RM]. However, we note
that the number of sub-iterations does not scale with the problem size, and
that the memory requirements have been reduced when solving the decomposed
algorithm.

The reduction of the number of iterations when the estimate of the load
factor λk is an upper bound is under investigation. One possible venue would
be to update the value of λk+1 with a value closer to λk

lb, instead of the average
computed in Step 3.2. In this manner, more lower bounds would be in general
detected, which require at most 4 iterations in the examples shown.
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[RM] N Rabiei and J J Muñoz. AAR-based decomposition method for
non-linear convex optimization. Submitted for publication.

[TTT06] K C Toh, M J Todd, and R H R H Tütüncü. On the imple-
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