
AAR-based decomposition
method for lower bound limit
analysis

J. J. Muñoz, N. Rabiei
Department of Applied Mathematics III, Laboratory of Numerical
Analysis (LaCàN), Universitat Politècnica de Catalunya (UPC), Urgell
187, 08036 Barcelona, Spain

Despite recent progress in optimisation techniques, finite element stability analysis of realistic three-dimensional

(3D) problems is still hampered by the size of the resulting optimisation problem. Current solvers may take a

prohibitive computational time, if they give a solution at all. Possible remedies to this are the design of adaptive de-

remeshing techniques, decomposition of the system of equations, or the decomposition of the optimisation problem.

This paper concentrates on the last approach, and presents an algorithm especially suited for limit analysis.

Optimisation problems in limit analysis are in general convex but non-linear. This fact renders the design of

decomposition techniques specially challenging. The efficiency of general approaches such as Benders or Dantzig-

Wolfe is not always satisfactory, and strongly depends on the structure of the optimisation problem. This work

presents a new method that is based on rewriting the feasibility region of the global optimisation problem as the

intersection of two subsets. By resorting to the Averaged Alternating Reflections (AAR) method in order to find

the distance between the sets, the optimisation problem is successfully solved in a decomposed manner. Some

representative examples illustrate the application of the method and its efficiency with respect to other well-known

decomposition algorithms.

1. Introduction

Computational limit analysis aims to accurately compute the

bearing capacity of structures. Mathematically, this can be stated as

numerically solving the following maximisation (static) problem:

λopt = max
λ,σ

λ

s.t.∇ · σ + λf = 0, ∀x ∈ Ω

σn = λg, ∀x ∈ Γn

JσnK = 0, ∀x ∈ Γi

σ ∈ B

(1)

bounds (Krabbenhøft et al., 2007) of the exact optimal load

factor λopt, and the two type of solutions may be in turn

combined for designing remeshing strategies (Muñoz et al., 2009).

The method has been well studied and applied for instance in

the analysis of anchors (Merifield and Smith, 2010; Muñoz et al.,

2013a), masonry structures (Gilbert et al., 2010) or inhomogeneous

materials (Bleyer and de Buhan, 2014). This article focuses on the

lower bound optimisation problem, although the ideas described

below can be also applied to other formulations. By using a

piecewise linear finite element discretisation of the stress variable

σ, and after using a linear transformation of the stresses, the

analytical problem in (1) can be turned into the following finite

optimisation problem (Lyamin and Sloan, 2002; Muñoz et al.,

2009):

λ∗ = max
λ,x

λ

s.t.Ax+ λf = b

x ∈ K

(2)

The vector x includes all the nodal components of the stress-like

variable x, which is a linear transformation of the stresses σ, in such

a manner that the new admissible set K is formed by the products of

second order cones (SOCs), that is K = K1 × . . .KN , with Ki =

Here, Ω is the domain of the body, while σ, f and g are respectively
the stress tensor, the volumetric loads, and the boundary loads.
The conditions in the optimisation problem (1) correspond to the
equilibrium conditions of a domain Ω, with applied boundary
loads g on the boundary Γn ⊆ ∂Ω, and with some potential
discontinuities Γi. The set B represents the admissible domain for
the plasticity criteria of the material.

Different discretisations of the optimisation problem in (1) yield
different static and kinematic formulations that give respectively
lower (Lyamin and Sloan, 2002; Lyamin et al., 2005) or upper

 1

{y E Rn lY1 2: Jy� + ... +Yfi}. The membership constraintx E
K, can be then easily dealt with by using standard optimisation
software such as SDPT3 (foh et al., 2006), Mosek (MOSEK ApS.,
2005) or Sonic (Lyamin, 2004). The static formulations solved here
are such that the optimum value of the optimisation problem in
(2), denoted by >. ·, is a lower bound of the exact solution in (1),
i.e. >. • � Aopt· Matrix A is the result of discretisating the terms
multiplying u in the three sets of equilibrium equations in (1),
while vector f contains those factors that are multiplied by >. in
the same equations, and vector b stems from the discretisation
and transformation of u into the stress-like variable x. Their
specific form is not detailed here but may be found elsewhere
(Lyamin and Sloan, 2002; Mufioz et al., 2009).

Due to the size of the resulting optimisation problem in (2),
limit analyses on three dimensional domains are scarce. Although
optimisation solvers have increased their efficiency and reduced
their computational cost, it is still very much desirable to design
new methods that reduce the cost of the solution process. One
of the possible remedies is to decompose the global problem
in (2) into smaller sub-problems, which can be solved at
a much lower cost This idea is not new, and has already
been used by Chen and Teboulle (1994); Kaneko (1983) using
proximal-point decomposition, and by Pastor et al. (2009) and
Kammoun et al. (2010) using overlapping domains. However, no
optimal decomposition strategy exists in the optimisation literature,
and that the standard techniques such as Benders (Benders,
1962; Geoffrion, 1972), Dantzig-Wolfe Conejo et al. (2006);
Dantzig and Wolfe (1960), or primal and dual decomposition
(Boyd et al., 2007) require a very large number of iterations for the
non-linear problem in (2) (Mufioz et al., 2013b).

The proposed algorithm is based on computing the distance
between two feasibility sets, which is found by using the
method of Averaged Alternating Reflections (AAR). The analysis
of the method and its converged properties can be found in
(Rabiei and Mufioz, 2015). The method is here summarised and
interpreted in mechanical terms, and it is applied to domains with an
irregular subdivision, and to problems with and without boundary
or body loads (gravity). The method is first presented and related to
our decomposition algorithm. Then the performance of the method
is illustrated with two representative examples. Finally the main
contributions are commented in the last Section.

2. AAA-based decomposition algorithm

2.1. AAA algorithm

The AAR algorithm consists of finding the distance between two
sets Z and W (Bauschke and Combettes, 2010). It is clear that if
the distance between the sets W and Z, denoted by d(W, Z), is
equal to zero, and the sets are compact, there is a common element
t E Zn W. The AAR algorithm searches for such element t by

2

z

RwRz(tn)

Figure 1. Illustration of the AAR algorithm for finding the

distance between the two sets z and w.

computing the fixed points of the following iterative process:

(3) tn+l = T(tn), with T =
Rw Rz + I.

2

The transformations Rw = 2Pw - I and Rz = 2P z - I are the
reflections on the sets Wand Z, with Pw and Pz the projections
onto the same sets, respectively. Figure 1 illustrates the meaning of
the transformations T, R and P.

Given a point tn , the AAR algorithm first searches for a point
Rz(tn) corresponding to the reflection of tn into set Z. Then, it
searches the reflection of such point Rz (tn) into set W, denoted
by Rw Rz(tn) = Rw(Rz(tn)). The AAR algorithm returns the
average between this last point and the initial point tn, that is
tn+1 = (tn + RwRw(tn))/2. Iftn E Zn W, then Pw(tn) =

Pz(tn) = Rw(tn) = Rz(tn) = tn , which means thatT(tn) =
tn, Therefore, the vector Pw Rz(tn) - Pz(tn), denoted by
d� + d;, in Figure 1, is a measure of the distance between sets
Zand W.

It is demonstrated in (Bauschke and Combettes, 2010), that when
d(W, Z) = 0, the iterative process in (3) converges towards a fixed
point such that t = T(t) and t E Zn W. And conversely, when
d(W, Z) > 0, the algorithm gives a series of increasing values
lltn 11, but a converging series of distances I Id:, + d!II.

2.2. Decomposition of lower bound optimisation
problem

A decomposition method which splits the domain n into two non­
overlapping domains is here proposed, n1 and n2, with Q = n1 LJ
n2. The global optimisation problem in (2) is also rewritten into the

following partitioned fonn:

s.t.A1 x1 + >.f1 = b1

A2x2 + >.f2 = b2

B1x1 + B2x2 = 0

X1 E K1,X2 E K2

where x1 E !11 and x2 E !12 are the stress-like nodal variables
in each domain. It will be convenient to rewrite the complicating
constraint B1 x1 + B2x2 = 0 into two constraints, and use a new
complicating variable t in such a manner that the optimisation
problem above now reads

(4)

>.·=max >.
A,x1 ,x2 ,t

s.t.A1x1 + >.f1 = b1

A2x2 + >.f2 = b2

B1x1 = t

B2x2 = -t

X1 E K1,X2 E K2

The new variable t corresponds to the nodal tractions at the
common boundary !11 n !12, as illustrated in Figure 2. This variable
allows us to decompose in turn the optimisation problem in (4) into
the following master problem

(5)
>.·=max>.

.X

s.t. d(Z(>.), W(>.)) = 0

where Z(>.) and W (>.) are the following feasible sets:

(6)
W(>.) = {tlA1X1 + >.f1 = b1 , B1X1 = t, X1 E K1}

Z(>.) = {tlA2 x2 + >.f2 = b2, B2x2 = -t, x2 E K2}

In mechanical terms, W (>.) and Z (>.) represent the sets of tractions
at the boundary !11 n !12 that are in equilibrium with the given
load factor>., and with admissible stresses x1 E K1 and x2 E K2,
respectively.

In order to explain the application of the AAR algorithm, Jet us
denote by .X and � strict upper and lower bounds respectively of
>. ·, i.e. >. • < .X and >. • > �· Then, since .X is not globally feasible,
no common traction field t at the boundary can he found that is
in equilibrium with admissible stresses x1 and x2, and with the
load factor A. Therefore d(Z(.X), W (A)) > 0. Furthennore, it may
occur that at least one of the sets W (A) or Z(.X) is empty since
no equilibrated traction field can he found for the load factor A in
one of the sub-domains. On the other hand, since the value ,1 is
globally feasible, the intersection W (,1) n Z (,1) is non-empty, and
thus d(Z(,1.), W(,1.)) = 0.

• t :
................

·--------------

• -t :

Figure 2. Partitioning of the domain n (left) into domains n1

and n2 (right). Variable tare the tractions at the common
boundary n1 n n2.

t

:5:. = Ak ,o
"ub

Figure 3. Illustration of the feasibility sets Z(A) and W(A) as a
function of A, and the optimal value A •.

Figure 3 shows schematically the sets W(>.) and Z(>.) on the
(>., t)-plane, and the situations when>.<>.· and>.>>.·. In each
case it can be observed that:

(7) {
>. � >.. ¢:? W (>.) n Z(>.) =/= 0 ¢:} d(W(>.), Z(>.)) = 0

>. > >.. ¢:? W(>.) n Z(>.) = 0 ¢:} d(W(>.),Z(>.)) > 0

These implications justify the fonn of the optimisation problem
given in (5), which in mechanical terms read: find the maximum
load factor >. • such that the two domains !11 and !12 are in
equilibrium with a common traction field C, and such that the stress
variables x1 and x2 are plastically admissible and in equilibrium
with C.

3

2.3. Master problem and sub-problems

In view of the previous results, the following master problem for

solving the optimal problem in (5) is proposed:

Initialise: find λ0
lb < λ∗ and λ0

ub > λ∗. Set λ0 = 1
2
(λ0

lb + λ0
ub)

and k = 0.

Step 1: Find the distance αk = d(W (λk), Z(λk)).

Step 2:

2.1 If αk = 0: Set λk+1
lb = λk and λk+1

ub = λk
ub.

2.2 If αk > 0: Set λk+1
lb = λk

lb and λk+1
ub = λk.

Step 3: Compute ǫλ = λk+1
lb − λk+1

lb .

3.1 If ǫλ < tol : STOP.

3.2 If ǫλ ≥ tol : λk+1 =
(

λk+1
lb + λk+1

ub

)

/2, set k = k + 1

and GO TO Step 1.

Step 1 requires the computation of the distance αk =

d(W (λk), Z(λk)). This step will be completed by resorting

to the AAR algorithm presented in Section 2.1 with W (λk) and

Z(λk) the feasibility sets of each sub-domain for a constant value

of the load factor λk. In fact, since the algorithm does not require

the computation of the actual value of the distance, but just in

detecting whether αk is positive, the following sub-problem will

be followed:

Step 1.1. Set λ = λk, tk0 = tk−1, n = 0

Step 1.2. Solve Sub-problem 1 in (8). Obtain d1
n and set t̃kn =

RZ(t
k
n) = tkn + 2d1

n.

Step 1.3. Solve Sub-problem 2 in (9). Obtain d2
n and set t̂kn =

RWRZ(t
k
n) = t̃kn + 2d2

n.

Step 1.4. Set βn = ||d1
n||+ ||d2

n|| and αn = ||d1
n + d2

n||.

If βn−1 > βn or αn < ǫ1α
– 1.4.1. Set αk = 0. STOP

elseif βn−1 < βn and ∆αn < ǫ2α
– 1.4.2. Set αk > 0. STOP

else

– 1.4.3. Set tkn+1 = T(tn) =
(

t̂kn + tkn
)

/2, n = n+ 1,

GO TO Step 1.2

The n-iterations in the Steps 1.2-1.4 will be called sub-iterations,

while the k-iterations in steps 1-3 will be called master-iterations.

Also, αk denotes the distance between the feasibility sets W (λk)

and Z(λk), while αn denotes the iterative values of these measures

within the sub-iterations in Steps 1.2-1.4, and in fact αk =

limn→∞ αn. The sub-iterations 1.2-1.4 aim precisely to detect

whether αk > 0 or αk = 0 for a number of sub-iterations as small

as possible.

Step 1.1. consists on the initialisation of the algorithm. The initial

lower and upper bounds, λ0
lb and λ0

ub, can be computed by setting

λ0
lb = 0, and λ0

ub = min(λ0
1, λ

0
2), with λ0

1 and λ0
2 the optimal

values of λ when the global problem is solved with only the

constraints of domain Ω1 and Ω2, respectively. Since the initial

value of the traction vector t does not need to belong to Z(λk)

or W (λk), the value t00 = 0 is set.

The sub-problems 1 and 2, in Steps 1.2 and 1.3, correspond respec-

tively to compute the transformations RZ(t
k
n) and RWRZ(t

k
n)

shown in Figure 1, necessary at each iteration of the AAR algorithm

in order to obtain the new point tkn+1 = T(tkn). This transformation

requires the vectors d1
n and d2

n drawn in Figure 1, which are

computed by solving the following two sub-problems,

min
x1,d

1

||d1||

s.t.A1x1 + λf1 = b1

B1x1 − d
1 = tn

x1 ∈ K1

(8)

and

min
x2,d

2

||d2||

s.t.A2x1 + λf2 = b2

B2x2 + d
2 = −tn − 2d1

n

x2 ∈ K2

(9)

Note that according to the forms in (8) and (9), the vectors d1 =

B1x1 − tn and d2 = −(B2x2 +RZ(tn)) measure respectively

the distance between tn and Z(λ), and between RZ(tn) = tn +

2d1
n and W (λ), as the AAR-algorithm in Figure 1 requires. The

problems in (8)-(9) give the optimal solutions d1
n and d2

n, which

are thus used to measure d(W (λk), Z(λk)).

It has been numerically found that in fact, the value of βn =

||d1
n||+ ||d2

n|| is a better indicator of the convergence trend of the

AAR algorithm in (8)-(9) than the parameter αn = ||d1
n + d2

n||.

The stopping criteria in Step 1.4 uses the two parameters, αn

and βn. Actually, the criteria in step 1.4. aims to detect, before

an accurate value of αk is computed, whether the AAR method

is converging towards a fixed value (and αn tends to zero), or

diverging (βn is increasing and αn converges towards a non-zero

value). In step 1.4.1. the value of λk is detected as a lower bound,

while in 1.4.2. λk is detected as an upper bound. In Step 1.4.3 no

identification can be said yet, and the iterative process in Steps 1.2-

1.4 continues. The convergence of the algorithm is demonstrated

in (Rabiei and Muñoz, 2015) for general non-linear problems. The

next section shows its performance for some illustrative examples.

Each one of these problems has the structure of a second order

cone program (SOCP), which can be solved by using standard

optimisation packages.

3. Results
This section presents the numerical results of the proposed method

in an example with non-zero boundary loads and no body loads,

and a second example with only body loads. In the two examples

4

Ux = Uy = O

L=l

g=(l,1)

L=l

Figure 4. Unstructured mesh in Problem 1 (nelem=402) of the

example in Section 3.1. The value of L denotes the length of the

closest straight boundary

Problem Nelem I:k nk
1 402 71
2 648 63
3 936 66

Table 1. Size and total number of sub-iterations (cumulative

number of steps 1.2-1.3 during all the master-iterations) in each

problem of the example in Section 3.1.

the domain is sub-divided with an irregular interface, and using the
tolerances (tol, €ta, €2a) = (5E - 4, IE - 4, IE - 4).

3.1. Square domain with boundary loads

The AAR-based decomposition method is applied to the analysis

of a square domain n = [O, 1] x [O, 1] with a fixed left boundary,

and the right boundary subjected to a nominal traction equal to g =

{ 1, 1 f. The geometry and boundary conditions are depicted in
Figure 4. Three discretisations with three different number of
elements (Nelem) have been used, which are indicated in Table 1.
The third column in the table also shows the accumulated number
of iterations in the sub-problems, that is, the sum of the nk
sub-iterations for each master iteration k. The domain has been
partitioned horizontally, although it has been numerically tested
that the results shown here do not qualitatively depend on the
actual partitioning and regularity of the mesh.

The optimal solution >. • for each problem has been computed
solving the global problem in (2) with SONIC solver (Lyamin,
2004).

The numerical results of Problems 1-3 are reported in Table 2-4,

respectively, where k indicates the number of master iterations, and
nk is the number of iterations taken by the sub-problem at each

master iteration k. The second and third columns indicate

Problem 1
.x

· = 0.50280
k

.x"-1
lb

.x"-1
ub

).k nk �>.k-1

1 0.0 0.704068 0.352034 2 0.7041
2 0.352034 0.704068 0.528051 31 0.3520
3 0.352034 0.528051 0.440043 2 0.1760
4 0.440043 0.528051 0.484047 2 0.0880
5 0.484047 0.528051 0.506049 11 0.0440
6 0.484047 0.506049 0.495048 2 0.0220
7 0.495048 0.506049 0.500548 2 0.0110
8 0.495048 0.503299 0.503299 9 0.0083
9 0.501924 0.503299 0.501924 2 0.0014
10 0.502611 0.503299 0.502611 2 0.0007
11 0.502611 0.502955 0.502955 4 0.0003
12 0.502783 0.502955 0.502783 2 0.0002
- 0.502783 0.502955 0.502869 I:=71 0.0002

Table 2. Numerical results of Problem 1 of the example in

Section 3.1.

Problem 2
>.. = 0.50371

k
.x"-1

lb

.x"-1
ub >.,. nk �.xk-1

1 0.0 0.745779 0.372889 2 0.7458
2 0.372889 0.745779 0.559334 21 0.3729
3 0.372889 0.559334 0.466112 2 0.1864
4 0.466112 0.559334 0.512723 9 0.0932
5 0.466112 0.512723 0.489417 2 0.0466
6 0.489417 0.512723 0.501070 2 0.0233
7 0.489417 0.506897 0.506897 7 0.0175
8 0.489417 0.503983 0.503983 9 0.0146
9 0.502527 0.503983 0.502527 2 0.0015
10 0.503255 0.503983 0.503255 2 0.0007
11 0.503619 0.503983 0.503619 2 0.0004
12 0.503619 0.503801 0.503801 3 0.0002
- 0.503619 0.503801 0.503710 I:=63 0.0002

Table 3. Numerical results of Problem 2 of the example in

Section 3.1.

the highest lower bound and the lowest upper bound at each
master iteration, in such a way that>.· E [>.fb-1,>.�b 1], and >.k =
(.xk-l+_xk-1

) 1•
2

..... . Numbers in bold font indicate that >. k is an upper
bound, and �.x k

-t = >.�b 1 - .x�
-1

. It can be observed on the
tables, and the plot in Figure 5, that whenever >. k is an upper
bound, the number of sub-iterations increases notoriously. In the
next example alternative updates of the load factor in Step 3.2. are
presented, that aim to amend this drawback.

5

Problem 3

.x· = 0.50507
k .x"-1

lb
.x"-1

ub

).k nk Li>.k-1

l 0.0 0.705498 0.352749 2 0.7055

2 0.352749 0.705498 0.529123 29 0.3527
3 0.352749 0.529123 0.440936 2 0.1764

4 0.440936 0.529123 0.485030 2 0.0882

5 0.485030 0.529123 0.507077 11 0.0441
6 0.485030 0.507077 0.496053 2 0.0220

7 0.496053 0.507077 0.501565 2 0.0110

8 0.501565 0.507077 0.504321 2 0.0055

9 0.504321 0.507077 0.505699 7 0.0028
10 0.504321 0.505699 0.505010 2 0.0014

11 0.505010 0.505699 0.505354 3 0.0007

12 0.505010 0.505354 0.505182 2 0.0003
- 0.505010 0.505182 0.505096 I:=66 0.0002

Table 4. Numerical results of Problem 3 of the example in
Section 3.1.

o.55�---------------�

0.5 ·
).k

0.45 -------·------�
0.4 ->.',k=l,2,. ... ,12

---�· = 0.50280

u...----

0
·
35

o- 20 40 60 80
Cumulative number of sub-iterations

Figure 5. Evolution of the load factor for each sub-iteration of
Problem 1 of the example in Section 3.1.

3.2. Vertical cut problem

This Section analyses the problem of a vertical cut problem,
which has been also studied elsewhere (Lyamin and Sloan, 2002;
Mufioz et al., 2009). Figure 6 indicates the geometry, mesh and
division employed. For a frictionless material (</> = 0) and with
c = 1, the global problem gives the optimum lower bound >. • =
2.66566, while the decomposed problem gives the values indicated
in the last row of Table 5.

Motivated by the large number of iterations that the algorithm talces
when detecting an upper bound in the previous example, in this
example alternative updates have heen tested to the one indicated
in Step 3.2. More specifically, the following two forms have been
used:

6

Figure 6. Geometry, mesh and boundary conditions of the
vertical cut problem in Section 3.2. The value of L denotes the
length of the closest straight boundary. Gray and white elements
denote the two domains.

• Form 1:

• Form 2:

(11)

In the second option, the values (>.tb, o1) and (>.�b, o2) correspond
to two pairs of previous upper bound load factors and the
corresponding estimated values of a. This update is equivalent
to estimating the value of >. k+i from a linear approximation
extrapolated from the previous two upper bounds (those that give
ci > 0). The first update with w1 = w2 = 1/2 has been tested, as
in the previous example, and also the choice w1 = 3w2 = 3/4. As
it can be observed in Table 5, the choice in Form 2 is the one that
gives the lowest number of iterations, and improves the convergence
once two upper bounds have been detected. When the update in
Form 2 was also tested in the first example in Section 3.1, the
total number of iterations I:k nk was also reduced by 1, 7 and 1
iteration, for Problems 1, 2 and 3, respectively, while the update in
Form 1 with w1 = 3w2 = 3/4 did not reduce the total numher of
iterations in two of the cases.

The computation of the global optimisation problem took 0.7s,
while each sub-problem took between 0.2s and 0.3s. The difference
between the global and decomposed problem of the tractions t at
the interface between the two sub-domains depends obviously on
the tolerance and number of sub-iterations. For the tolerances used,
this difference was below lE - 4 in all the cases tested.

In general, assuming that the cost of the optimisation problem
increases approximately with O(nelem2), the total number of
iterations obtained using the decomposed algorithm is still not
competitive. Nonetheless, the number of iterations that other

Vertical Cut problem, λ∗ = 2.66566

w1 = w2 = 1/2 w1 = 3w2 = 3/4 Eqn. (11)

k λk nk λk nk λk nk

1 1.4469 2 1.4469 2 1.4469 2

2 2.1703 2 1.8086 2 2.1703 2

3 2.5321 2 22.0799 2 2.5321 2

4 2.7129 24 2.2834 2 2.7129 24

5 2.6225 2 2.4360 4 2.6225 2

6 2.6677 11 2.5504 2 2.6677 11

7 2.6451 2 2.6363 10 2.6642 2

8 2.6564 2 2.7007 27 2.6659 3

9 2.6621 2 2.6524 2 2.6651 2

10 2.6649 2 2.6644 2 2.6655 3

11 2.6663 3 2.6735 4 - -

12 2.6656 3 2.6667 4 - -

13 2.6652 2 2.6650 2 - -

14 - - 2.6654 2 - -

15 - - 2.6658 8 - -

2.66547
∑

=59 2.66556
∑

=74 2.66532
∑

=53

5. Acknowledgements

The authors acknowledge the financial support of the Spanish

Ministry of Economy and Competitiveness, through the research

grant Nr. DPI2013-43727-R.

REFERENCES

Bauschke HH and Combettes PL (2010) Convex analysis and

monotone operator theory in Hilbert spaces. CMS Books in

Mathematics, Springer.

Benders JF (1962) Partitioning procedures for solving

mixed-variables programming problems. Numer. Math. 4:

238–252.

Bleyer J and de Buhan P (2014) A computational homogenization

approach for the yield design of periodic thin plates. Part I:

Construction of the macroscopic strength criterion. Int. J.

Solids Struct. 51(13): 2448–2459.

Boyd S, Xiao L, Mutapcic A and Mattingley J (2007) Notes on

Decomposition Methods. Technical report, Stanford University,

http://stanford.edu/class/ee364b/lectures.html,

Notes of EE364B course.

Chen G and Teboulle M (1994) A proximal-based decomposition

method for convex minimization problems. Math. Progr. Ser. A

64: 81–101.

Conejo A, Castillo E, Mı́nguez R and Garcı́a-Bertrand R (2006)

Decomposition Techniques in Mathematical Programming.

Springer, The Netherlands.

Dantzig GB and Wolfe (1960) Decomposition principle for linear

programs. Oper. Res. 8(1): 101–111.

Geoffrion AM (1972) Generalized Benders Decomposition. J.

Optim. Th. Appl. 10(4): 238–252.

Gilbert M, Smith C and Pritchard T (2010) Masonry arch analysis

using discontinuity layout optimisation. Proc. Inst. Civil Eng. -

Eng. Comp. Mech. 163(3): 155–166.

Kammoun Z, Pastor F, Smaoui H and Pastor J (2010) Large static

problem in numerical limit analysis: A decomposition

approach. Int. J. Num. Anal. Meth. Geomech. 34: 1960–1980.

Kaneko I (1983) A decomposition procedure for large-scale

optimum plastic design problems. Int. J. Num. Meth. Engng.

19: 873–889.

Krabbenhøft K, Lyamin AV and Sloan SW (2007) Formulation and

solution of some plasticity problems as conic programs. Int. J.

Solids Struct. 44: 1533–1549.

Lyamin AV (2004) Sonic. Solver for second order conic

programing.

Lyamin AV and Sloan SW (2002) Lower bound limit analysis using

non-linear programming. Int. J. Num. Meth. Engng. 55:

576–611.

Lyamin AV, Sloan SW, Krabbenhøft K and Hjiaj M (2005) Lower

bound limit analysis with adaptive remeshing. Int. J. Num.

Meth. Engng. 63: 1961–1974.

Merifield R and Smith C (2010) The ultimate uplift capacity of

multi-plate strip anchors in undrained clay. Comp. Geotech.

Table 5. Numerical results of the vertical cut problem in Section
3.2. Values in bold font denote upper bound load factors.

standard procedures would require, such as Benders or dual
decomposition, has been reduced by one order of magnitude
(Rabiei and Muñoz, 2015). Also, the number of sub-iterations does
not scale with the problem size, and the memory requirements of
the global problem have been reduced by a factor of two when using
the decomposed algorithm.

4. Conclusions

This paper has presented and algorithm that solves the optimisation
problem in limit analysis. The method exploits the structure of the
optimisation problem: a single scalar on the objective function.

The proposed algorithm does not reduce the total computational
cost, but halves the memory requirements, and does not scale with
increasing number of elements. It has been shown that the use of
irregular divisions of the domains does not alter the performance of
the algorithm.

The reduction of the number of iterations when the estimate of the
load factor λk is an upper bound is under investigation. Different
choices have been already tested here. One of them uses a weighting
that renders λk+1 closer to λl

k
b, while another extrapolates the value

of λk+1 from the previous upper bounds. Further alternative options
are under study in order to reduce the total number of iterations.

7

37(4): 504–514.

MOSEK ApS. (2005) The MOSEK optimization tools version 3.2

(Revision 8). User’s Manual and Reference Avail.

http://www.mosek.com.

Muñoz JJ, Bonet J, Huerta A and Peraire J (2009) Upper and lower

bounds in limit analysis: adaptive meshing strategies and

discontinuous loading. Int. J. Num. Meth. Engng. 77: 471–501.

Muñoz JJ, Lyamin A and Huerta A (2013a) Stability of anchored

sheet wall in cohesive-frictional soils by FE limit analysis. Int.

J. Num. Anal. Meth. Geomech. 37(9): 1213–1230.

Muñoz JJ, Rabiei N, Lyamin A and Huerta A (2013b) Direct

Methods for Limit States in Structures and Materials, chap.

Computation of bounds for anchor problems in limit analysis

and decomposition techniques. Springer Verlag, pp. 79–100.

Pastor F, Loute E and Pastor J (2009) Limit analysis and convex

programming: A decomposition approach of the kinematic

mixed method. Int. J. Num. Meth. Engng. 78: 254–274.

Rabiei N and Muñoz JJ (2015) AAR-based decomposition method

for non-linear convex optimization. Comp. Opt. Appl. On line.

Toh KC, Todd MJ and Tütüncü RHRH (2006) On the

implementation and usage of SDPT3 : a Matlab software

package for semidefinite-quadratic-linear programming,

version 4.0. Technical report, National University of Singapore,

http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html.

8

