2,438 research outputs found
Social networks and labour productivity in Europe: An empirical investigation
This paper uses firm-level data recorded in the AMADEUS database to
investigate the distribution of labour productivity in different European
countries. We find that the upper tail of the empirical productivity
distributions follows a decaying power-law, whose exponent is obtained
by a semi-parametric estimation technique recently developed by Clementi et al.
(2006). The emergence of "fat tails" in productivity distribution has already
been detected in Di Matteo et al. (2005) and explained by means of a model of
social network. Here we show that this model is tested on a broader sample of
countries having different patterns of social network structure. These
different social attitudes, measured using a social capital indicator, reflect
in the power-law exponent estimates, verifying in this way the existence of
linkages among firms' productivity performance and social network.Comment: LaTeX2e; 18 pages with 3 figures; Journal of Economic Interaction and
Coordination, in pres
Social Network Analytics for Advanced Bibliometrics: Referring to Actor Roles of Management Journals instead of Journal Rankings
Impact factors are commonly used to assess journals relevance. This implies a simplified view on science as a single-stage linear process. Therefore, few top-tier journals are one-sidedly favored as outlets, such that submissions to top-tier journals explode whereas others are short of submissions. Consequently, the often claimed gap between research and practical application in application-oriented disciplines as business administration is not narrowing but becoming entrenched. A more complete view of the scientific system is needed to fully capture journals ´ contributions in the development of a discipline.
Simple citation measures, as e.g. citation counts, are commonly used to evaluate scientific work. There are many known dangers of miss- or over-interpretation of such simple data and this paper adds to this discussion by developing an alternative way of interpreting a discipline based on the positions and roles of journals in their wider network. Specifically, we employ ideas from the network analytic approach. Relative positions allow the direct comparison between different fields. Similarly, the approach provides a better understanding of the diffusion process of knowledge as it differentiates positions in the knowledge creation process. We demonstrate how different modes of social capital create different patterns of action that require a multidimensional evaluation of scientific research. We explore different types of social capital and intertwined relational structures of actors to compare journals with different bibliometric profiles. Ultimately, we develop a multi-dimensional evaluation of actor roles based upon multiple indicators and we test this approach by classifying management journals based on their bibliometric environment
Network organizations of general practitioners: antecedents of formation and consequences of participation
BACKGROUND: Network forms of organization are increasingly popular in primary care. At the end of the 1990s General Practitioners (GPs) in Italy were given the opportunity to adopt network forms of organization with the aim of improving the quality of their services. However factors affecting GPs' choices to join a network and the consequences of network membership have not been evaluated. METHODS: Administrative data of a Local Health Authority in Central Italy were analyzed using statistical methods at individual and dyadic levels of analysis. RESULTS: Homophily factors seem to influence a GP's choice of network. The consequences of network membership on GP performances seem very limited. CONCLUSIONS: When considering to foster the diffusion of network organizational forms in health care creating a network structure, like that of Italian GPs, is not sufficient. Other features of the implementation phase, work organization and human resource management should also be considered
BRCA1 and BRCA2 mutations in a population-based study of male breast cancer
Background: The contribution of BRCA1 and BRCA2 to the incidence of male breast cancer (MBC)
in the United Kingdom is not known, and the importance of these genes in the increased risk of female
breast cancer associated with a family history of breast cancer in a male first-degree relative is unclear.
Methods: We have carried out a population-based study of 94 MBC cases collected in the UK. We
screened genomic DNA for mutations in BRCA1 and BRCA2 and used family history data from these
cases to calculate the risk of breast cancer to female relatives of MBC cases. We also estimated the
contribution of BRCA1 and BRCA2 to this risk.
Results: Nineteen cases (20%) reported a first-degree relative with breast cancer, of whom seven also
had an affected second-degree relative. The breast cancer risk in female first-degree relatives was 2.4
times (95% confidence interval [CI] = 1.4–4.0) the risk in the general population. No BRCA1 mutation
carriers were identified and five cases were found to carry a mutation in BRCA2. Allowing for a
mutation detection sensitivity frequency of 70%, the carrier frequency for BRCA2 mutations was 8%
(95% CI = 3–19). All the mutation carriers had a family history of breast, ovarian, prostate or
pancreatic cancer. However, BRCA2 accounted for only 15% of the excess familial risk of breast
cancer in female first-degree relatives.
Conclusion: These data suggest that other genes that confer an increased risk for both female and
male breast cancer have yet to be found
One-Loop Calculation of the Oblique S Parameter in Higgsless Electroweak Models
We present a one-loop calculation of the oblique S parameter within Higgsless
models of electroweak symmetry breaking and analyze the phenomenological
implications of the available electroweak precision data. We use the most
general effective Lagrangian with at most two derivatives, implementing the
chiral symmetry breaking SU(2)_L x SU(2)_R -> SU(2)_{L+R} with Goldstones,
gauge bosons and one multiplet of vector and axial-vector massive resonance
states. Using the dispersive representation of Peskin and Takeuchi and imposing
the short-distance constraints dictated by the operator product expansion, we
obtain S at the NLO in terms of a few resonance parameters. In
asymptotically-free gauge theories, the final result only depends on the
vector-resonance mass and requires M_V > 1.8 TeV (3.8 TeV) to satisfy the
experimental limits at the 3 \sigma (1\sigma) level; the axial state is always
heavier, we obtain M_A > 2.5 TeV (6.6 TeV) at 3\sigma (1\sigma). In
strongly-coupled models, such as walking or conformal technicolour, where the
second Weinberg sum rule does not apply, the vector and axial couplings are not
determined by the short-distance constraints; but one can still derive a lower
bound on S, provided the hierarchy M_V < M_A remains valid. Even in this less
constrained situation, we find that in order to satisfy the experimental limits
at 3\sigma one needs M_{V,A} > 1.8 TeV.Comment: 34 pages, 9 figures. Version published in JHEP. Some references and
sentences have been added to facilitate the discussio
The Dark Side of the Electroweak Phase Transition
Recent data from cosmic ray experiments may be explained by a new GeV scale
of physics. In addition the fine-tuning of supersymmetric models may be
alleviated by new O(GeV) states into which the Higgs boson could decay. The
presence of these new, light states can affect early universe cosmology. We
explore the consequences of a light (~ GeV) scalar on the electroweak phase
transition. We find that trilinear interactions between the light state and the
Higgs can allow a first order electroweak phase transition and a Higgs mass
consistent with experimental bounds, which may allow electroweak baryogenesis
to explain the cosmological baryon asymmetry. We show, within the context of a
specific supersymmetric model, how the physics responsible for the first order
phase transition may also be responsible for the recent cosmic ray excesses of
PAMELA, FERMI etc. We consider the production of gravity waves from this
transition and the possible detectability at LISA and BBO
Radiative Electroweak Symmetry Breaking in a Little Higgs Model
We present a new Little Higgs model, motivated by the deconstruction of a
five-dimensional gauge-Higgs model. The approximate global symmetry is
, breaking to , with a gauged subgroup of
, breaking to . Radiative corrections produce an additional small vacuum misalignment,
breaking the electroweak symmetry down to . Novel features of this
model are: the only un-eaten pseudo-Goldstone boson in the effective theory is
the Higgs boson; the model contains a custodial symmetry, which ensures that
at tree-level; and the potential for the Higgs boson is generated
entirely through one-loop radiative corrections. A small negative mass-squared
in the Higgs potential is obtained by a cancellation between the contribution
of two heavy partners of the top quark, which is readily achieved over much of
the parameter space. We can then obtain both a vacuum expectation value of
GeV and a light Higgs boson mass, which is strongly correlated with the
masses of the two heavy top quark partners. For a scale of the global symmetry
breaking of TeV and using a single cutoff for the fermion loops, the
Higgs boson mass satisfies 120 GeV GeV over much of
the range of parameter space. For raised to 10 TeV, these values increase
by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise the
predicted values of the Higgs boson mass, but the model still favors
GeV.Comment: 32 pages, 10 figures, JHEP style. Version accepted for publication in
JHEP. Includes additional discussion of sensitivity to UV effects and
fine-tuning, revised Fig. 9, added appendix and additional references
On the Stability and Structural Dynamics of Metal Nanowires
This article presents a brief review of the nanoscale free-electron model,
which provides a continuum description of metal nanostructures. It is argued
that surface and quantum-size effects are the two dominant factors in the
energetics of metal nanowires, and that much of the phenomenology of nanowire
stability and structural dynamics can be understood based on the interplay of
these two competing factors. A linear stability analysis reveals that metal
nanocylinders with certain magic conductance values G=1, 3, 6, 12, 17, 23, 34,
42, 51, 67, 78, 96, ... times the conductance quantum are exceptionally stable.
A nonlinear dynamical simulation of nanowire structural evolution reveals a
universal equilibrium shape consisting of a magic cylinder suspended between
unduloidal contacts. The lifetimes of these metastable structures are also
computed.Comment: 8 pages, 6 figure
General practice performance in referral for suspected cancer: influence of number of cases and case-mix on publicly reported data
Background:Publicly available data show variation in GPs’ use of urgent suspected cancer (USC) referral pathways. We investigated whether this could be due to small numbers of cancer cases and random case-mix, rather than due to true variation in performance. Methods:We analysed individual GP practice USC referral detection rates (proportion of the practice's cancer cases that are detected via USC) and conversion rates (proportion of the practice's USC referrals that prove to be cancer) in routinely collected data from GP practices in all of England (over 4 years) and northeast Scotland (over 7 years). We explored the effect of pooling data. We then modelled the effects of adding random case-mix to practice variation. Results:Correlations between practice detection rate and conversion rate became less positive when data were aggregated over several years. Adding random case-mix to between-practice variation indicated that the median proportion of poorly performing practices correctly identified after 25 cancer cases were examined was 20% (IQR 17 to 24) and after 100 cases was 44% (IQR 40 to 47). Conclusions:Much apparent variation in GPs’ use of suspected cancer referral pathways can be attributed to random case-mix. The methods currently used to assess the quality of GP-suspected cancer referral performance, and to compare individual practices, are misleading. These should no longer be used, and more appropriate and robust methods should be develope
- …