123 research outputs found

    Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pelvic incidence, sacral slope and slip percentage have been shown to be important predicting factors for assessing the risk of progression of low- and high-grade spondylolisthesis. Biomechanical factors, which affect the stress distribution and the mechanisms involved in the vertebral slippage, may also influence the risk of progression, but they are still not well known. The objective was to biomechanically evaluate how geometric sacral parameters influence shear and normal stress at the lumbosacral junction in spondylolisthesis.</p> <p>Methods</p> <p>A finite element model of a low-grade L5-S1 spondylolisthesis was constructed, including the morphology of the spine, pelvis and rib cage based on measurements from biplanar radiographs of a patient. Variations provided on this model aimed to study the effects on low grade spondylolisthesis as well as reproduce high grade spondylolisthesis. Normal and shear stresses at the lumbosacral junction were analyzed under various pelvic incidences, sacral slopes and slip percentages. Their influence on progression risk was statistically analyzed using a one-way analysis of variance.</p> <p>Results</p> <p>Stresses were mainly concentrated on the growth plate of S1, on the intervertebral disc of L5-S1, and ahead the sacral dome for low grade spondylolisthesis. For high grade spondylolisthesis, more important compression and shear stresses were seen in the anterior part of the growth plate and disc as compared to the lateral and posterior areas. Stress magnitudes over this area increased with slip percentage, sacral slope and pelvic incidence. Strong correlations were found between pelvic incidence and the resulting compression and shear stresses in the growth plate and intervertebral disc at the L5-S1 junction.</p> <p>Conclusions</p> <p>Progression of the slippage is mostly affected by a movement and an increase of stresses at the lumbosacral junction in accordance with spino-pelvic parameters. The statistical results provide evidence that pelvic incidence is a predictive parameter to determine progression in isthmic spondylolisthesis.</p

    Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay

    Get PDF
    Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-β enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.National Human Genome Research Institute (U.S.) (grant R01HG004037)National Science Foundation (U.S.) ((NSF) grant PHY-0957573)National Science Foundation (U.S.) (NSF grant PHY-1022140)Broad Institut

    CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering

    Get PDF
    Prokaryotic type II CRISPR-Cas systems can be adapted to enable targeted genome modifications across a range of eukaryotes.1–7. Here we engineer this system to enable RNA-guided genome regulation in human cells by tethering transcriptional activation domains either directly to a nuclease-null Cas9 protein or to an aptamer-modified single guide RNA (sgRNA). Using this functionality we developed a novel transcriptional activation–based assay to determine the landscape of off-target binding of sgRNA:Cas9 complexes and compared it with the off-target activity of transcription activator–like (TAL) effector proteins8, 9. Our results reveal that specificity profiles are sgRNA dependent, and that sgRNA:Cas9 complexes and 18-mer TAL effector proteins can potentially tolerate 1–3 and 1–2 target mismatches, respectively. By engineering a requirement for cooperativity through offset nicking for genome editing or through multiple synergistic sgRNAs for robust transcriptional activation, we suggest methods to mitigate off-target phenomena. Our results expand the versatility of the sgRNA:Cas9 tool and highlight the critical need to engineer improved specificity

    High-throughput mapping of regulatory DNA

    Get PDF
    Quantifying the effects of cis-regulatory DNA on gene expression is a major challenge. Here, we present the multiplexed editing regulatory assay (MERA), a high-throughput CRISPR-Cas9–based approach that analyzes the functional impact of the regulatory genome in its native context. MERA tiles thousands of mutations across ~40 kb of cis-regulatory genomic space and uses knock-in green fluorescent protein (GFP) reporters to read out gene activity. Using this approach, we obtain quantitative information on the contribution of cis-regulatory regions to gene expression. We identify proximal and distal regulatory elements necessary for expression of four embryonic stem cell–specific genes. We show a consistent contribution of neighboring gene promoters to gene expression and identify unmarked regulatory elements (UREs) that control gene expression but do not have typical enhancer epigenetic or chromatin features. We compare thousands of functional and nonfunctional genotypes at a genomic location and identify the base pair–resolution functional motifs of regulatory elements.National Institutes of Health (U.S.) (1U01HG007037

    Qualitative study on the implementation of professional pharmacy services in Australian community pharmacies using framework analysis

    Get PDF
    Abbreviations: BCT, Behavioural change techniques taxonomy; BCW, Behavioural change wheel; CFIR, Consolidated framework for implementation research; EPOC, Cochrane effective practice and organisation of care; FISpH, Framework for the implementation of services in pharmacy; GIF, Generic implementation framework; KPI, Key performance indicator; TDF, Theoretical domains frameworkBackground: Multiple studies have explored the implementation process and influences, however it appears there is no study investigating these influences across the stages of implementation. Community pharmacy is attempting to implement professional services (pharmaceutical care and other health services). The use of implementation theory may assist the achievement of widespread provision, support and integration. The objective was to investigate professional service implementation in community pharmacy to contextualise and advance the concepts of a generic implementation framework previously published. Methods: Purposeful sampling was used to investigate implementation across a range of levels of implementation in community pharmacies in Australia. Twenty-five semi-structured interviews were conducted and analysed using a framework methodology. Data was charted using implementation stages as overarching themes and each stage was thematically analysed, to investigate the implementation process, the influences and their relationships. Secondary analyses were performed of the factors (barriers and facilitators) using an adapted version of the Consolidated Framework for Implementation Research (CFIR), and implementation strategies and interventions, using the Expert Recommendations for Implementing Change (ERIC) discrete implementation strategy compilation. Results: Six stages emerged, labelled as development or discovery, exploration, preparation, testing, operation and sustainability. Within the stages, a range of implementation activities/steps and five overarching influences (pharmacys' direction and impetus, internal communication, staffing, community fit and support) were identified. The stages and activities were not applied strictly in a linear fashion. There was a trend towards the greater the number of activities considered, the greater the apparent integration into the pharmacy organization. Implementation factors varied over the implementation stages, and additional factors were added to the CFIR list and definitions modified/contextualised for pharmacy. Implementation strategies employed by pharmacies varied widely. Evaluations were lacking. Conclusions: The process of implementation and five overarching influences of professional services implementation in community pharmacy have been outlined. Framework analysis revealed, outside of the five overarching influences, factors influencing implementation varied across the implementation stages. It is proposed at each stage, for each domain, the factors, strategies and evaluations should be considered. The Framework for the Implementation of Services in Pharmacy incorporates the contextualisation of implementation science for pharmacy.The study was funded as part of a University of Technology Sydney (UTS) Research Excellence Scholarship (RES), comprising of an Australian Postgraduate Award (APA) Scholarship funded by the Australian Government, plus a Top-up funded by the University of Technology Sydney, received from the primary author (JCM)

    Guidelines for investigating causality of sequence variants in human disease

    Get PDF
    The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development

    Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue

    Get PDF
    The discovery of expression quantitative trait loci (“eQTLs”) can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n = 266). We found that ∼30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3′UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to a variety of complex traits
    corecore