736 research outputs found

    Lateral rectus metastasis from an occult systemic malignancy masquerading as abducens palsy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Abduction deficit in the elderly is commonly caused by sixth cranial nerve palsy due to microvasculopathy. However, not all such cases are of neurogenic origin, as our case report shows.</p> <p>Case presentation</p> <p>We present the case of a 75-year-old woman who was generally unwell, developed acute diplopia and was found to have a right abduction deficit in a quiet eye with no gross orbital signs and symptoms. A computed tomography scan of the head and orbits revealed a metastatic mass in the right lateral rectus muscle. Systemic evaluation confirmed widespread thoracic and abdominal metastases from an occult systemic malignancy. Lateral rectus metastasis from an occult systemic malignancy was masquerading as abducens palsy.</p> <p>Conclusion</p> <p>Orbital metastasis involving extraocular muscles can present as isolated diplopia with minimal local signs and the absence of a history of systemic malignancy. A detailed history and systemic examination can identify suspicious cases, which should be investigated further. The clinician should avoid presuming that such an abduction deficit in the elderly is a benign neurogenic palsy.</p

    Cosmic Hydrogen Was Significantly Neutral a Billion Years After the Big Bang

    Full text link
    The ionization fraction of cosmic hydrogen, left over from the big bang, provides crucial fossil evidence for when the first stars and quasar black holes formed in the infant universe. Spectra of the two most distant quasars known show nearly complete absorption of photons with wavelengths shorter than the Ly-alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift z~6.3, about a billion years after the big bang. Here we show that the radii of influence of ionizing radiation from these quasars imply that the surrounding IGM had a neutral hydrogen fraction of tens of percent prior to the quasar activity, much higher than previous lower limits of ~0.1%. When combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination from the WMAP data, our result suggests the existence of a second peak in the mean ionization history, potentially due to an early formation episode of the first stars.Comment: 14 Pages, 2 Figures. Accepted for publication in Nature. Press embargo until publishe

    Pleomorphic adenocarcinoma of the lacrimal gland with multiple intracranial and spinal metastases

    Get PDF
    BACKGROUND: Pleomorphic adenoma of the lacrimal gland is known to undergo malignant transformation when incompletely excised. Even if such a malignant change occurs, intracranial direct invasion and leptomeningeal seeding are seldom encountered. CASE PRESENTATION: A 50-year-old woman presented with malignant transformation associated with both intracranial invasion and multiple intracranial and spinal disseminations in the third recurrence of pleomorphic adenoma of the lacrimal gland, 6 years after initial treatment. MRI demonstrated increased extent of orbital mass, extending to the cavernous sinus. The patient underwent intensity-modulated radiation therapy (IMRT) and Gamma Knife radiosurgery. Follow-up MRI showed multiple leptomeningeal disseminations to the intracranium and spine. CONCLUSION: It is important to recognize that leptomeningeal intracranial and spinal disseminations of pleomorphic adenocarcinoma can occur, although it is extremely rare. To our knowledge, we report the first case of pleomorphic adenocarcinoma of the lacrimal gland presumably metastasizing to the intracranium and spine

    EGFR-Mediated Carcinoma Cell Metastasis Mediated by Integrin αvβ5 Depends on Activation of c-Src and Cleavage of MUC1

    Get PDF
    Receptor tyrosine kinases and integrins play an essential role in tumor cell invasion and metastasis. We previously showed that EGF and other growth factors induce human carcinoma cell invasion and metastasis mediated by integrin αvβ5 that is prevented by Src blockade [1]. MUC1, a transmembrane glycoprotein, is expressed in most epithelial tumors as a heterodimer consisting of an extracellular and a transmembrane subunit. The MUC1 cytoplasmic domain of the transmembrane subunit (MUC1.CD) translocates to the nucleus where it promotes the transcription of a metastatic gene signature associated with epithelial to mesenchymal transition. Here, we demonstrate a requirement for MUC1 in carcinoma cell metastasis dependent on EGFR and Src without affecting primary tumor growth. EGF stimulates Src-dependent MUC1 cleavage and nuclear localization leading to the expression of genes linked to metastasis. Moreover, expression of MUC1.CD results in its nuclear localization and is sufficient for transcription of the metastatic gene signature and tumor cell metastasis. These results demonstrate that EGFR and Src activity contribute to carcinoma cell invasion and metastasis mediated by integrin αvβ5 in part by promoting proteolytic cleavage of MUC1 and highlight the ability of MUC1.CD to promote metastasis in a context-dependent manner. Our findings may have implications for the use and future design of targeted therapies in cancers known to express EGFR, Src, or MUC1

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    Identification of hot-spot residues in protein-protein interactions by computational docking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction (so called 'hot-spots'). These hot-spot residues have high interest since they are considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately, large-scale experimental measurement of residue contribution to the binding energy, based on alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational approaches for hot-spot prediction have been reported, but they usually require the structure of the complex.</p> <p>Results</p> <p>We have applied here normalized interface propensity (<it>NIP</it>) values derived from rigid-body docking with electrostatics and desolvation scoring for the prediction of interaction hot-spots. This parameter identifies hot-spot residues on interacting proteins with predictive rates that are comparable to other existing methods (up to 80% positive predictive value), and the advantage of not requiring any prior structural knowledge of the complex.</p> <p>Conclusion</p> <p>The <it>NIP </it>values derived from rigid-body docking can reliably identify a number of hot-spot residues whose contribution to the interaction arises from electrostatics and desolvation effects. Our method can propose residues to guide experiments in complexes of biological or therapeutic interest, even in cases with no available 3D structure of the complex.</p

    Acquiring a pet dog significantly reduces stress of primary carers for children with autism spectrum disorder: a prospective case control study

    Get PDF
    This study describes the impact of pet dogs on stress of primary carers of children with Autism Spectrum Disorder (ASD). Stress levels of 38 primary carers acquiring a dog and 24 controls not acquiring a dog were sampled at: Pre-intervention (17 weeks before acquiring a dog), post-intervention (3–10 weeks after acquisition) and follow-up (25–40 weeks after acquisition), using the Parenting Stress Index. Analysis revealed significant improvements in the intervention compared to the control group for Total Stress, Parental Distress and Difficult Child. A significant number of parents in the intervention group moved from clinically high to normal levels of Parental Distress. The results highlight the potential of pet dogs to reduce stress in primary carers of children with an ASD

    IgG1 Fc N-glycan galactosylation as a biomarker for immune activation.

    Get PDF
    Immunoglobulin G (IgG) Fc N-glycosylation affects antibody-mediated effector functions and varies with inflammation rooted in both communicable and non-communicable diseases. Worldwide, communicable and non-communicable diseases tend to segregate geographically. Therefore, we studied whether IgG Fc N-glycosylation varies in populations with different environmental exposures in different parts of the world. IgG Fc N-glycosylation was analysed in serum/plasma of 700 school-age children from different communities of Gabon, Ghana, Ecuador, the Netherlands and Germany. IgG1 galactosylation levels were generally higher in more affluent countries and in more urban communities. High IgG1 galactosylation levels correlated with low total IgE levels, low C-reactive protein levels and low prevalence of parasitic infections. Linear mixed modelling showed that only positivity for parasitic infections was a significant predictor of reduced IgG1 galactosylation levels. That IgG1 galactosylation is a predictor of immune activation is supported by the observation that asthmatic children seemed to have reduced IgG1 galactosylation levels as well. This indicates that IgG1 galactosylation levels could be used as a biomarker for immune activation of populations, providing a valuable tool for studies examining the epidemiological transition from communicable to non-communicable diseases
    corecore