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Abstract The interaction of solitary waves with multiple, in-line vertical

cylinders is investigated. The fixed cylinders are of constant circular cross-

section and extend from the sea floor to the free surface. In general, there are

N of them lined in a row parallel to the incoming wave direction. Both the non-

linear, generalized Boussinesq and the Green-Naghdi shallow-water wave equa-

tions are used. A boundary-fitted curvilinear coordinate system is employed

to facilitate the use of the finite-difference method on curved boundaries. The

governing equations and boundary conditions are transformed from the phys-

ical plane onto the computational plane. These equations are then solved in

time on the computational plane that contains a uniform grid and by use

of the successive over relaxation method and a second-order finite-difference

method to determine the horizontal force and overturning moment on the

cylinders. Resulting solitary wave forces from the nonlinear Green-Naghdi and

the Boussinesq equations are presented, and the forces are compared with the

experimental data when available.
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2 D. R. Neill, M. Hayatdavoodi and R. C. Ertekin

Keywords Solitary wave · multiple inline vertical circular cylinders · wave
force and moment · Boussinesq equations · Green-Naghdi equations

1 Introduction1

Many marine structures are built on vertical cylinders; consequently, the de-2

termination of the forces which are a result of the wave-cylinder interaction is3

an important problem in ocean engineering. However, very few studies have4

considered nonlinear shallow-water wave equations to investigate solitary- and5

cnoidal-wave diffraction by vertical cylinders and calculated the forces and6

moments acting on it.7

We consider here the interaction of solitary waves with fixed, multiple in-8

line vertical cylinders of constant circular cross section. The cylinders extend9

from the seafloor to the free surface, and the still-water depth is held constant.10

Different shallow-water wave equations can produce different solitary waves,11

and may describe the flow field differently, and thereby can lead to different12

wave loads. Both the generalized Boussinesq (gB) (Wu (1981)) and the Green-13

Naghdi (GN) (Green and Naghdi (1977)) Level I equations are used to solve14

numerically the initial-boundary-value problem to obtain the horizontal forces15

and overturning moments on multiple cylinders in shallow water.16

The linearized potential problem of wave diffraction by a single vertical17

cylinder was solved by MacCamy and Fuchs (1954) for an ideal fluid. The18

infinite depth solution of the same problem was obtained earlier by Havelock19

(1940). Scattering of waves for very long wave length (solitary wave) by a20

cylindrical object (island) was first solved by Omer and Hall (1949).21

Only few investigations of nonlinear effects in the time domain exist com-22

pared with the linear ones. Isaacson (1983) studied the interaction of a solitary23

wave with an isolated cylinder by an approximate method by using the linear24

boundary conditions although the solitary wave problem has to be nonlin-25

ear. Isaacson and Cheung (1992) used a second-order time-domain method to26

investigate this problem. These studies showed good agreement between the27

numerical predictions and experimental data. Wang et al. (1992) used a gen-28

eralized Boussinesq model to investigate the nonlinear effects of wave-cylinder29

interaction on hydrodynamic forces. Their investigation indicated that linear30

equations may produce wave forces that are 40% less than those predicted31

by nonlinear equations. Yang and Ertekin (1992) used the boundary-element32

method to solve the fully nonlinear diffraction problem to investigate the33
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Solitary Wave Diffraction by Vertical Cylinders 3

diffraction of a solitary wave and Stokes waves by a vertical circular cylin-34

der in finite water depth; they solved Laplace’s equation for an ideal fluid35

subject to the exact boundary conditions to determine nonlinear wave diffrac-36

tion and loading. Neill and Ertekin (1997) studied the diffraction of solitary37

waves by a vertical cylinder in shallow waters and presented some preliminary38

results. More recently, Ghadimi et al. (2012) studied the diffraction of linear39

waves by a floating, vertical circular cylinder and solved Laplace’s equations40

by use of the strip theory.41

Most of the previous works have been extended to wave diffraction by42

isolated cylinders, and the influence of neighboring cylinders is more limited.43

McIver and Evans (1984) estimated the wave forces on a group of fixed, vertical44

cylinders by solving Laplace’s equation subject to linear boundary conditions,45

and by use of an approximated method to account for the effect of neighboring46

cylinders in the array. Similar approach was followed by Linton and Evans47

(1990) to determine wave loads on an array of cylinders; they solved the linear48

equations exactly, closely following a method suggested earlier by Spring and49

Monkmeyer (1974). Other studies on wave diffraction by an array of vertical50

cylinders include Malenica et al. (1999); Kagemoto et al. (2002); Han et al.51

(2015); Kamath et al. (2015); Barlas (2012). Solitary wave interaction with a52

group of vertical cylinders is studied by Mo and Liu (2009); Mo (2010) by use53

of numerical models based on the Navier-Stokes and Euler’s equations. Kudeih54

et al. (2010) conducted laboratory experiments to study random wave loads55

on an array of vertical cylinders in shallow water.56

Our goal in this paper is to study the problem of diffraction of solitary57

waves by multiple-inline vertical cylinders in shallow water, by use of the58

Level I GN equations and the generalized Boussinesq equations, and discuss59

the nonlinearity effect on the wave loads on the cylinders. Our objectives are60

(i) to develop two models based on these well-known nonlinear, shallow-water61

wave equations, (ii) to study the flow field and the wave impact on multiple62

inline cylinders, including the effects of the neighbouring cylinders, and (iii)63

to compare the results of these models with each other, and with the existing64

data.65

We first introduce the nonlinear shallow-water wave equations that we use66

and formulate the initial-boundary-value problem and discuss the wavemaker67

solutions of these equations. This is followed by the discussion on grid gen-68

eration, where we reformulate the problem in the computational plane after69

transforming the problem from the physical plane. We then discuss the numer-70
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4 D. R. Neill, M. Hayatdavoodi and R. C. Ertekin

ical method used and finally present the results obtained for multiple in-line71

cylinders. Both the predicted forces and moments on the vertical cylinders are72

compared with the experimental data and predictions by others whenever they73

are available, see e.g., Yates and Wang (1994). Finally, results are discussed74

with an emphasis on how these two sets of shallow-water equations can predict75

the flow field around multiple, in-line vertical cylinders.76

2 Theory77

A Cartesian coordinate system, whose origin is on the upwave or entrance78

boundary where the numerical wave maker is located, is used. In this three-79

dimensional system, the x−direction is along the line of symmetry, which also80

is perpendicular to the incident wave crest-line. The y−direction is parallel to81

the entrance boundary, and the z−direction is vertical, with positive z up, see82

Fig 1. It is assumed that the vertical cylinders have constant, circular cross83

section and the still-water depth, h, is held constant. The problem is symmetric84

with respect to the line that passes through the in-line cylinders center and85

is perpendicular to the wave crest-line. Since the problem is symmetric, only86

one half of the physical region needs to be considered. The physical problem is87

modeled as an initial-boundary-value problem. In Fig. 1, the upwave boundary88

is where the numerical wavemaker is located and the downwave boundary is89

the ”open” boundary or absorbing boundary to prevent possible reflections90

as much as possible. On the symmetry, far wall and the cylinder boundaries,91

the normal component of the fluid velocities must vanish but we allow the92

tangential component as the fluid is assumed to be inviscid in this work.93

2.1 Shallow-water wave equations94

The solitary wave scattering, horizontal forces and overturning moment on the95

vertical, in-line cylinders are calculated in time by solving either the GN or96

gB equations. In this section, the governing equations and assumptions made97

in developing the theoretical models are discussed.98

2.1.1 The Green-Naghdi (GN) Equations99

The GN equations use the assumption that the fluid is incompressible and100

homogeneous. In this study, the fluid is assumed inviscid, although this is not101
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Solitary Wave Diffraction by Vertical Cylinders 5

Fig. 1 Schematic of the numerical wave tank, showing different boundaries discussed in the
text, and showing three in-line cylinders. Not to scale.

a requirement for the GN equations in general, see Green and Naghdi (1984).102

The derivation of the equations does not require the flow to be irrotational,103

therefore, the velocity potential does not exist. Investigations of these equa-104

tions were made by Green and Naghdi (1976a,b); Ertekin (1984); Ertekin et al.105

(1986); Ertekin (1988); Shields and Webster (1988); Demirbilek and Webster106

(1992); Ertekin et al. (2014), among others.107

Unlike the Boussinesq-class equations, the GN equations do not follow108

from a perturbation expansion. The order of error, therefore, cannot be de-109

fined. The range of applicable wave lengths and heights must be determined by110

comparisons with experimental data. The kinematic and dynamic free-surface111

conditions are satisfied exactly. However, the conservation equations are satis-112

fied exactly in the depth averaged sense only. Ertekin (1984) obtained rather113

a classical form of the GN equations (see also Ertekin et al. (1986)). The GN114

equations can be specialized to our case by setting the pressure on the top115
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6 D. R. Neill, M. Hayatdavoodi and R. C. Ertekin

surface of the fluid sheet (p̂) to atmospheric, and further assume that it is116

negligible, and by setting the water depth to constant (α = 0) in the original117

equations given by Ertekin (1984):118

ζt +∇ · {(h+ ζ)V } = 0 , (1)

u̇+ gζx = −1

3
{2ζxζ̈ + (h+ ζ)ζ̈x} , (2)

v̇ + gζy = −1

3
{2ζyζ̈ + (h+ ζ)ζ̈y} , (3)

where h is the constant water depth, g is the gravitational acceleration, ζ is119

the free surface elevation measured from the still-water level, and ∇ is the120

gradient vector operator, ∇ = (∂/∂x)e1 + (∂/∂y)e2, and V = ue1 + ve2 is121

the particle velocity vector on the horizontal plane as these are assumed to122

not depend on the vertical z coordinate in the Level I GN equations. In higher123

level GN equations, however, they would depend on the z coordinate, see e.g.,124

Shields and Webster (1988); Zhao et al. (2014a, 2015). e1 and e2 are the unit125

base vectors in the x and y directions, respectively. It is understood that the126

subscripts denote differentiation with respect to them. The superposed dot127

denotes the material time derivative, i.e., for any physical quantity f , we have128

ḟ = ft+ufx+vfy. A double superposed dot denotes the second material time129

derivative. Note that Eq. (1) is a statement of conservation of mass and Eqs.130

(2) and (3) are statements of conservation of linear momentum and director131

momentum (moment of momentum) combined, in the x and y directions,132

respectively.133

The following dimensionless variables are used in this study by selecting134

(ρ, g, h) as a dimensionally independent set:135

t̄ =
t

h

√

gh, F̄ =
F

ρgh2R
, M̄ =

M

ρgh3R
, P̄ =

P

ρgh
, (4)

where the bars represent the dimensionless quantities, and ρ is the mass den-136

sity, F is the horizontal force on the cylinder, M is the overturning moment137

with respect to the sea floor, P is the pressure, and R is the cylinder radius.138

Any quantity whose dimension is length is scaled by h and any quantity which139

has the dimension of velocity is scaled by
√
gh. The same nondimensionaliza-140

tion is used for the gB equations and the linear equations and the bars over the141

physical quantities will be dropped for convenience unless otherwise stated.142

A close look at Eqs. (2) and (3) shows that they involve the second order143

time derivative of the surface elevation. By combining the definition of mate-144
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Solitary Wave Diffraction by Vertical Cylinders 7

rial derivative with the continuity equation, Eq. (1), a new equation for the145

second derivative of ζ can be obtained. This procedure results in removing the146

difficulties associated with the presence of the time derivatives of the surface147

elevation on the right-hand sides of Eqs. (2) and (3). As discussed by Qian148

(1994), this is accomplished by first isolating ζt in Eq. (1) and then substi-149

tuting it into the first material derivative of ζ. As a result, the first material150

derivative of ζ no longer contains a partial derivative with respect to time, t,151

i.e., ζ̇ = −∇ · [(h + ζ)V ] + V · ∇ζ. The local time derivative of the surface152

elevation, ζ, is again removed from its second material derivative to obtain153

ζ̈ = (h+ ζ)[(ux+vy)
2− (utx+vty)−u(uxx+vxy)−v(uxy+vyy)]. Substituting154

these into Eqs. (2) and (3) produces a set of component equations that do155

not contain the second derivatives with respect to time, and this is a very156

significant step to efficiently and accurately obtain the numerical solutions of157

these equations. The dimensionless form of the GN equations, Eqs. (1)-(3), af-158

ter eliminating the time derivatives of ζ from the right-side of the momentum159

equations can be obtained as160

ζt = −ζxu− ζyv − (ζ + 1) (ux + vy) , (5)

161

ut − (ζ + 1) ζx (uxt + vyt)−
1

3
(ζ + 1)

2
(uxxt + vxyt) = −ζx − uux − vuy

− (ζ + 1) ζx

[

(ux + vy)
2 − u (uxx + vxy)− v (uxy + vyy)

]

− 1

3
(ζ + 1)

2 ·

· ((ux + 2vy) (uxx + vxy)− vx (uxy + vyy)− u (uxxx + vxxy)− v (uxxy + vxyy)) ,

(6)

vt − (ζ + 1) ζy (uxt + vyt)−
1

3
(ζ + 1)2 (uxyt + vyyt) = −ζy − uvx − vvy

− (ζ + 1) ζy

[

(ux + vy)
2 − u (uxx + vxy)− v (uxy + vyy)

]

− 1

3
(ζ + 1)

2 ·

· [(2ux + vy) (uxy + vyy)− vy (uxx + vxy)− u (uxxy + vxyy)− v (uxyy + vyyy)] .

(7)

2.1.2 The generalized Boussinesq (gB) Equations162

We use the generalized Boussinesq equations based in the form derived by Wu163

(1981) for constant water depth and for zero atmospheric pressure. We give164

here the dimensionless form of these equations after we use Eq. (4) and remove165
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8 D. R. Neill, M. Hayatdavoodi and R. C. Ertekin

the bars over the quantities:166

ζt +∇ · {(1 + ζ)∇φ} = 0 , (8)

167

φt +
1

2
||∇φ||2 + ζ =

1

3
∇φt , (9)

where φ is the layer-mean velocity potential. These equations assume an in-168

compressible and inviscid fluid. The use of the layer-mean velocity potential,169

also requires the assumption of irrotationality of the flow. The bottom no-flux170

condition as well as the kinematic and dynamic free-surface conditions are171

satisfied approximately in the derivation of the gB equations.172

The first gB equation, Eq. (8), is simply the continuity equation and repre-173

sents the conservation of mass statement. The second equation, Eq. (9), follows174

from the momentum equation, and is obtained using perturbation methods.175

Therefore, the conservation of momentum is satisfied only approximately. The176

error is of order (αǫ4, α2ǫ2) as shown by Wu (1981), where α = A/h, ǫ = h/L,177

where A is the wave amplitude and L is the wave length. The two param-178

eters, α and ǫ, represent the nonlinear and dispersive behaviors of waves,179

respectively. For the gB equations, both parameters are assumed to be small,180

O(α) = O(µ2) < 1, where µ = kh = 2πǫ. The gB equations are most applicable181

when the Ursell parameter, Ur = α/µ2, is of O(1).182

The gB equations are not used here in the common form given by Eqs. (8)183

and (9) (as was done by Ertekin et al. (1990)) mainly for reasons of convenience184

in programming. The layer-mean velocity potential is instead eliminated from185

the equations by using the definition of the velocity potential. The layer-mean186

velocity potential is the average of the 3-D velocity potential over the depth187

of the fluid. This is in contrast to the 3-D velocity potential which represents188

the flow state at a specific point in time. The Eqs. (8) and (9) then are written189

in nondimensional component form as190

ζt +∇ · {(1 + ζ)V } = 0 , (10)

191

u̇ = ut + uux + vuy + ζx =
1

3
(uxx + uyy)t =

1

3
∆ut , (11)

192

v̇ = vt + uvx + vvy + ζy =
1

3
(vxx + vyy)t =

1

3
∆vt , (12)

where ∆ is the 2-D Laplacian on the horizontal plane. Clearly, this set of193

equations are simpler than the GN equations, (5)-(7), as there are less number194

of terms and derivatives involved.195



Auth
or 

ac
ce

pte
d m

an
us

cri
pt 

 

Not 
co

py
ed

ite
d b

y t
he

 jo
urn

al

Solitary Wave Diffraction by Vertical Cylinders 9

2.2 Initial and Boundary Conditions196

The initial conditions are chosen to correspond to a quiescent fluid, i.e., ζ(x, y, 0) =197

u(x, y, 0) = 0. Therefore, the velocities and surface elevations are initially set198

to zero at which time the incident waves are located outside the computational199

domain on the upwave side. The boundary conditions along the line of sym-200

metry, the surface of the cylinder, and the far wall, are the no-flux condition.201

This line of symmetry is along the wave propagation direction. The symmetry202

axis acts like a rigid surface, therefore, no flow is allowed through this surface.203

The normal velocity (v) therefore is equal to zero. The downwave boundary204

is an open boundary. The waves must be absorbed by this boundary without205

reflection. At the upwave boundary, the wavemaker solution, will be presented206

in subsequent sections for the solitary wave.207

The sea-floor no-flux condition, as well as the kinematic and dynamic free-208

surface conditions, are accounted for directly in the derivations of the gB209

(approximately) and GN (exactly) equations, and therefore, they are not given210

here. See Green and Naghdi (1976a) and Wu (1981) for details on how the211

boundary conditions are embedded into the GN and gB equations, respectively.212

Although we use a large computational domain for greater accuracy, it213

is necessary to use an absorption boundary on the downwave side. Previous214

works of Wu and Wu (1982) and Ertekin (1984) showed that the relatively215

simple Orlanski’s condition with constant phase speed c = ±√
gh prevents216

significant reflections from the open-boundary. We use this open-boundary217

condition here which reads218

Ωt + cΩx = 0, (13)

where Ω may be ζ(x, t) or u(x, t) at the downwave boundary.219

It is noted that after the solitary wave has completely entered into the220

computational domain through the upwave boundary, the upwave boundary221

converts to the Orlanski condition, Eq. (13) (see e.g., Ertekin et al. (1986)) to222

absorb any reflected waves, similar to the downwave boundary.223

We note that with regards to the implementation of the open boundary224

condition, Eq. (13), the use of the incident wave speed on the downwave open225

boundary instead of the linear wave speed provides superior wave absorption.226

Since this boundary needs to absorb supercritical solitary waves, the introduc-227

tion of the incident wave speed in the Orlanski condition allows this radiation228

boundary to absorb the remainder of the incident wave after it had traversed229
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10 D. R. Neill, M. Hayatdavoodi and R. C. Ertekin

the entire domain. The upwave boundary where the wavemaker is located need230

to absorb any reflections due to the diffraction of solitary waves, and therefore,231

the linear long-wavelength limit, c =
√
gh, is used for the wave speed in the232

Orlanski condition on the upwave boundary. We monitored the wave eleva-233

tions at various numerical wave gauges and observed that the open-boundary234

conditions work well with minimum amount of reflections.235

2.3 Wave-maker solutions236

There are different types of solitary wave solutions. Some shallow-water equa-237

tions provide an analytic solitary-wave solution (as in the GN equations used238

here) and others need to be calculated numerically (as in the gB equations239

used here).240

2.3.1 GN Solitary Wavemaker241

An analytic solitary wave solution of the the GN Level I equations can be242

found in Green and Naghdi (1976a), and in Ertekin (1984), who has studied243

a number of constrained domain problems in shallow water involving solitons.244

The dimensional solitary-wave solution of the GN equations is given by1245

ζ(x′) = Asech2 (τ x′) , (14)

where246

τ =

√

3A

4h2(A+ h)
. (15)

and A is the amplitude of the solitary wave measured from the still-water level247

and is given by248

A =
c2

g
− h or

c√
gh

=

√

1 +
A

h
, (16)

where c is the speed (critical or supercritical, or the depth Froude num-249

ber Fr = U/
√
gh ≥ 1) of the wave, h is the constant water depth and250

x′ = x − x0 − Ut, where x0 is the midpoint of the solitary wave at time251

t = 0. The horizontal velocity can be determined from the conservation of252

mass equation in the moving coordinates, u = cζ/(1 + ζ) . Hayatdavoodi and253

1 This solution is the same as given by Rayleigh (1876).
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Solitary Wave Diffraction by Vertical Cylinders 11

Ertekin (2015c) presented a closed-form of the GN solitary wave horizontal254

and vertical velocities as255

u(x′, 0) =
√

g(A+ h)
Asech2 (τx′)

h+Asech2 (τx′)
, (17)

w(x′, z, 0) =
z + h

h+Asech2 (τx′)

(

2Asech2 (τx′) tanh (τx′)
)

(

√

g(A+ h)− u
)

.

(18)

Since the solitary wave in theory has an infinite length, it is not necessary256

to modulate it as long as it is located well to the left of the upwave boundary257

at time t = 0. Discussion on the steady, solitary-wave solution of high-level258

GN equations can be found in Zhao et al. (2014b).259

2.3.2 gB Solitary Wavemaker260

The solitary wave solution of the gB equations uses the same numerically261

determined wave solution used by Qian (1994); Roddier and Ertekin (1999)262

(see also Teng and Wu (1992)). This solution is found by eliminating the time263

derivatives from the gB equations by converting them to the moving or wave264

coordinates. The gB equations then can be combined into a single differential265

equation:266

ζ2x =
6

Fr2
(1+ζ)4 ln(1+ζ)+

(

2 +
6

Fr2

)

(1+ζ)4−
(

3 +
6

Fr2

)

(1+ζ3)+(1+ζ) ,

(19)

where Fr = c/
√
gh is the depth Froude number and c is the dimensional wave267

celerity as before. The wave profile then is determined iteratively from Eq.268

(19). The amplitude, A, of the soliton is input into Eq. (19) as the initial value269

of ζ at the wave crest. We then use the 4th-order Runge-Kutta method to270

determine the slope for other values of x′ to determine ζ(x′) at the next step271

x′

i+1 = x′

i +∆x′. This process is repeated until the wave profile is completed,272

also see e.g., Roddier (1994); Neill (1996) for more details.273
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12 D. R. Neill, M. Hayatdavoodi and R. C. Ertekin

2.4 Force and Moment Calculations274

2.4.1 GN Equations275

Ertekin (1984) provided closed-form relations for the integrated pressure (over276

the water depth) and the bottom pressure (on the seafloor). These relations277

are given by278

PI(x, y, t) =
1

6
(1 + ζ)2

(

2ζ̈ + 3
)

, p(x, y, t) =
1

2
(1 + ζ)

(

ζ̈ + 2
)

, (20)

respectively.279

The total wave force on the cylinder is obtained by numerically integrating280

the pressure PI around the circumference of the cylinder in the direction of281

the unit normal vector on the cylinder. The horizontal force component is then282

obtained by taking its x−component.283

A difficulty exists in determining the resulting overturning moment for the284

GN equations. There is neither an expression for the moment nor an expression285

for the pressure as a function of depth that would allow the calculation of the286

moment. This difficulty is overcome here by assuming that the variation of287

the total pressure is linear with depth (equal to zero on the free surface and288

equal to the sea floor pressure on the bottom). This assumption is in close289

agreement with the pressure distribution predicted by the gB equations. This290

will be further discussed in the Results and Discussion Section. The error291

associated to the assumption of linear variation of pressure can be estimated,292

and indeed it is very small, as we will discuss later in this section.293

The depth-varying pressure reads294

P (x, y, z, t) =
1

2
(ζ − z)

(

ζ̈ + 2
)

. (21)

Therefore, to determine the equation for the overturning moment with295

respect to the sea floor, Eq. (21) is multiplied by the moment arm, and then296

integrated over the depth:297

MI(x, y, t) =

∫ ζ

−1

(1 + z)P (z) dz =
1

12
(1 + ζ)3

(

ζ̈ + 2
)

. (22)

The moment acting on the cylinder can then be determined numerically by298

integrating the x−component of MI around the circumference of the cylinder.299

See, e.g., Hayatdavoodi and Ertekin (2015b,a), for an approach to determine300
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the wave-induced loads on horizontal objects by use of the Level I GN equa-301

tions.302

To determine the error of using Eq. (21) in approximating the pressure303

distribution in the z direction, we integrate P (x, y, z, t) of Eq. (21) over the304

water depth:305

PIL(x, y, t) =

∫ ζ

−1

P (x, y, z, t) dz =
1

4
(1 + ζ)

2
(

ζ̈ + 2
)

. (23)

The percent error, ǫ, made by the assumption of linearly-varying total pres-306

sure along the water column is then determined by comparing the integrated307

(linearly-varying) pressure, PIL, with the integrated pressure of the GN equa-308

tions given by Eq. (20):309

ǫ =

∣

∣

∣

∣

PI − PIL

PI

∣

∣

∣

∣

× 100 =

∣

∣

∣

∣

∣

ζ̈

4ζ̈ + 6

∣

∣

∣

∣

∣

× 100. (24)

Although Eq. (24) determines the error produced by the integrated pressure,310

it also is a reasonable estimate of the error produced by the moment equation311

(22). This error is determined for every node along the cylinder boundary and312

then an average is calculated. This average is then used as an approximate313

error value in the moment calculations as discussed later in Section 5.3.314

2.4.2 gB Equations315

Unlike the GN equations, the pressure as a function of depth is provided by the316

gB equations in terms of the layer-mean potential, see Wu (1981). However,317

we write the gB pressure equation in dimensionless velocity form:318

P (z) = ζ − z +

(

z +
1

2
z2
)

∇ · V t. (25)

To facilitate the determination of the force, we integrate Eq. (25) over the319

water column and obtain320

PI =
1

2
(1 + ζ)

2
+

1

6
(1 + ζ)

(

ζ2 + 2(ζ − 1)
)

∇ · V . (26)

Multiplying Eq. (25) by the moment arm and integrating over the depth321

gives the expression for the overturning moment (about the y axis) with respect322
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to the seafloor:323

MI =
1

6
(1 + ζ)

3
+

1

8
(1 + ζ)

2
(

(1 + ζ)
2 − 2

)

∇ · V t . (27)

Finally, the integrated pressure and moment, PI and MI , are numerically324

integrated around the circumference of the cylinder in the direction of the unit325

normals on the cylinder to determine the horizontal force in the x direction326

and the overturning moment about the y axis, respectively.327

3 Grid Generation328

To facilitate the use of finite-difference methods to solve shallow water wave329

equations in the presence of irregular boundaries, numerical grid generation is330

used in this study. The use of numerical grid generation allows the inclusion331

of irregular boundaries conveniently by mapping the physical domain into a332

rectangular computational domain. The grid chosen for the computational333

domain is both regular and rectangular. This is not a requirement for the use334

of the grid-generation transformation system. It does, however, significantly335

reduce the complexity of the computations. The present study uses an elliptical336

generation technique in a connected 2-D region. Since the problem contains a337

symmetry axis, only one half of the region needs to be analyzed. Therefore, the338

grid system does not need to have re-entrant boundaries in either the physical339

or transformed plan.340

The use of elliptical grid generation technique has been described exten-341

sively by, for example, Thompson et al. (1977). In this technique, a one-to-one342

mapping is developed between the physical plane and the computational plane343

by use of the Laplace equation. A uniform computational grid system with unit344

interval spacings is used in the solution of all the governing equations. This345

greatly simplifies the use of finite-difference methods. The minimization of the346

Euler integral ensures a one-to-one mapping. Details on the transformation347

of the governing equations as used in this work can be found in Qian (1988);348

Ertekin et al. (1990).349

4 Numerical Method350

We use the finite-difference method to solve the partial differential equations351

that govern the fluid motion. The difference equations are found through the352
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use of the second-order central difference formulas in space. To use the dif-353

ference equations along the boundaries, a fictitious point method is used. For354

example, along any boundary x = x1, the equation for the first derivative355

would be356

f ′(x1) =
f(x0)− f(x2)

2∆x
+O(∆x2). (28)

However, since x0 is outside of the boundary, f(x0) is undefined. A fictitious357

value for f(x0) is found through a parabolic approximation: f0 = 3f1−3f2+f3.358

By combining this equation with Eq.(28), a new equation is produced for the359

first derivative along the boundary:360

f ′(x1) =
−3f(x1) + 4f(x2)− f(x3)

2∆x
+O(∆x2). (29)

This method can be used to produce equations for all the derivatives along the361

boundaries, see Roddier (1994); Roddier and Ertekin (1999) for more details.362

We use the time marching technique known as the modified Euler method,363

see e.g., Burden and Faires (1985). This two-step method has second-order364

accuracy. This method was also used successfully by Ertekin (1984); Ertekin365

et al. (1986); Roddier and Ertekin (1999); Hayatdavoodi and Ertekin (2015c),366

among others, in the solution of the GN and gB equations in 2-D.367

The Successive Over-Relaxation (SOR) iterative method is used to solve368

the transformed forms of three sets of equations: GN Eqs. (5), (6), (7); and gB369

Eqs. (10), (11), (12). Two modifications are made to this method to improve370

the computational efficiency. Normally, the solution for u and v at the last371

time step is used as the initial guess for the next time step. In this analysis,372

however, the initial guess is extrapolated from the last two time steps using373

uk+1(i, j)−2uk(i, j)−uk−1(i, j) and vk+1(i, j)−2vk(i, j)−vk−1(i, j), where k is374

the time counter. Shown by Roddier and Ertekin (1999), this method reduces375

the number of SOR iterations by more than 40%. The second modification is376

to alternate the starting point and order of the iterations. Instead of always377

starting at i = 1, j = 1, the starting point is alternated between the four378

corners of the computational domain, A(i = 1, j = 1), D(i = 1, j = n), E(i =379

m, j = 1) and F (i = m, j = n). This technique also reduced the number of380

iterations.381

The analysis carried out here requires filtering to remove numerical noise382

and ensure stability as pointed out by Ertekin et al. (1986). Much of this383

noise is the result of the central-difference scheme. When insufficient filtering384

is applied, the results become unstable. The third-order filtering by itself does385
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not provide sufficient stability. Our studies show that a combination of the386

five- (2nd order) and seven-point (3rd order) linear filtering schemes used here387

was developed by Shapiro (1975) and proved adequate to ensure stability.388

This includes the use of a third-order filtering in the direction normal to the389

prevailing wave crests, the ξ direction, and a second-order filtering parallel390

to the wave crests, the η direction. This does not modify the shape of the391

incoming waves. The filtering formulas that we use are given by392

fj =
1

16
(−fj−2 + 4fj−1 + 10fj + 4fj+1 − fj−2) ,

fi =
1

64
(−fi−3 − 6fi−2 + 15fi−1 + 44fi + 15fi+1 − 6fi+2 + fi+3) ,

(30)

where f is a generic variable that can represent ζ, u or v.393

5 Error Monitoring394

5.1 Conservation of Mass395

To monitor the accuracy of the numerical solutions, the change in the mass396

due to numerical errors is determined following the approach used by Qian397

(1994); Roddier (1994). Conservation of mass is satisfied exactly for both the398

Green-Naghdi and the Boussinesq equations. Except for mass passing through399

the upstream or downstream boundaries, any change in mass is due to nu-400

merical errors. The Green-Naghdi equations exactly satisfy the conservation401

of momentum in the depth averaged sense, while the Boussinesq equations402

satisfy the momentum conservation approximately. Therefore, to monitor the403

numerical errors, the change in mass is chosen (preferred) here over the change404

in momentum or mechanical energy.405

The total excess mass inside the physical domain (M), at a specific time,406

is determined by numerically integrating over the water column and over the407

surface area of the physical domain:408

M =

∫

A

(1 + ζ) dA. (31)

The mass flow through the open boundaries is determined by integrating409

over these boundaries:410
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dmUS =

∫

US

(1 + ζ) (v.n) ds , (32)

dmDS =

∫

DS

(1 + ζ) (v.n) ds , (33)

where, dmUS is the mass flow through the upstream boundary, and dmDS is411

the mass flow through the downstream boundary. These boundaries are normal412

to the y-axis, therefore, the dot product of the velocity vector (v) and the unit413

normal (n) is simply the horizontal velocity in the x-direction (u). Therefore,414

Eqs. (32) and (33) are simplified to415

dmUS =

∫

US

(1 + ζ) uds , (34)

dmDS =

∫

DS

(1 + ζ) uds . (35)

These equations must also be integrated over time to determine the total416

loss or gain of mass across these boundaries.417

dmUS =

∫

t

∫

US

(1 + ζ) (v.n) dsdt′ , (36)

dmDS =

∫

t

∫

DS

(1 + ζ) (v.n) dsdt′ , (37)

where both the temporal and spacial integrations are performed numerically418

using Simpsons rule.419

The total change in mass (dMe) which is a result of numerical errors is420

found through the following relationship:421

dMe = M −M0 − dMUS + dMDS , (38)

where M0 is the initial total mass which is equal to ρVD, where VD is the422

volume of the quiescent body of fluid. The percent change in mass due to423

numerical errors can then be calculated through424

ME =
dMe

M0

∗ 100(%) . (39)

The percent change in mass, as a function of time, is determined for each425

case. Some sample values for ME for both the Green-Naghdi and the Boussi-426
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nesq solitary waves are given in Neill (1996). The maximum values of −0.20%427

for the solitary wave are found to be the typical mass excess for the cases428

studied here. In general, the solitary waves produce negative changes in mass.429

The Green-Naghdi equations and the Boussinesq equations produced similar430

mass change results.431

5.2 Stability Conditions432

It was shown by Ertekin (1984) through a Von Neumann stability analysis of433

the linearized Green-Naghdi equations that ∆t must be less than ∆x for sta-434

bility. This is equivalent to satisfying the Courant condition, which is accom-435

plished by setting ∆t < ∆x or ∆y. Since the Boussinesq and Green-Naghdi436

equations both linearize to the same equations, see Ertekin (1984), this sta-437

bility analysis applies equally well to the Boussinesq equations. The nominal438

values of ∆t, ∆x and ∆y used are 0.20, 0.25h and 0.33h, respectively. Conse-439

quently, this criteria is not violated in the grid systems that are used in this440

study.441

5.3 Green-Naghdi Moment Error442

As discussed in Section 2.4, to determine the moment resulting from the Green-443

Naghdi equations, a linear pressure distribution over the water depth is as-444

sumed. The error caused by this assumption is determined through Eq. (24).445

This error is determined for each cylinder and in every case analyzed. Ex-446

amples of these errors are given for the Green-Naghdi solitary, and cnoidal,447

waves in Neill (1996). It is shown that the moment error for the solitary wave448

cases is less than 1.8%. This is primarily caused by the very large amplitude of449

the solitary wave case considered (A = 0.5h). Given the simplifying assump-450

tion made about the pressure distribution over the z direction, the error is451

reasonably small.452

6 Numerical Setup453

The principle configuration for solitary waves in this study is a 4.0h diame-454

ter cylinder and a 0.5h wave amplitude, unless otherwise is mentioned. This455
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configuration is used in many solitary wave cases and is chosen primarily to fa-456

cilitate the comparison with other studies. Moreover, the 0.5h wave amplitude457

is at the practical limit of use for the gB equations. According to Mei (1989),458

these equations are applicable for O(A) < 1. This limit is a result of the as-459

sumptions that led to the derivation of these equations. Although the GN460

equations do not have an explicit limit, they must, nevertheless, have similar461

implicit limitations. Any such limitations of the GN equations must be judged462

by comparison with experiments.463

The 4.0h cylinder diameter is also a convenient and reasonable size. This464

size is large enough to produce significant diffraction, and is easily modeled465

numerically. Smaller cylinders would require finer grids for the same accuracy466

and viscous forces may become important. A larger diameter cylinder would467

require a larger domain. Clearly, the latter two factors would increase the468

computational time significantly.469

The domain used includes a 20h distance from the upwave boundary to470

the first cylinder surface, a 20h distance from the last cylinder surface to the471

downwave boundary and a 20h distance from the far wall to the symmetry472

axis. It will be shown later that this domain is large enough to avoid problems473

of wave interactions at the boundaries that affect the resulting forces and474

moments on the cylinders.475

The nominal (dimensionless) grid sizes used in this domain are ∆x = 0.25476

and ∆y = 0.33. These sizes are small enough to adequately model the surface477

displacements and large enough to not require excessive CPU (central process-478

ing unit) time. To insure stability, the time step must be smaller than the grid479

size as discussed before. Therefore, the time step is chosen as ∆t = 0.2.480

7 Results and Discussion481

Results of the GN and the gB equations for solitary wave interaction with ver-482

tical cylinders are presented and discussed in this section. We will first start483

by solitary wave interaction with a single cylinder and compare the results of484

the theoretical models with the existing laboratory measurements and other485

theories. This is then followed by results and discussion on solitary wave in-486

teraction with two and three in-line vertical cylinders. We note that in this487

study, and for the two and three cylinder configurations, all cylinders have the488

same diameter.489
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7.1 Comparisons: Solitary Wave Interaction with a Single Cylinder490

A comparison of time series of solitary wave force on a vertical cylinder, cal-491

culated by the GN and the gB equations versus the laboratory experiments of492

Yates and Wang (1994) is shown in Fig.2. In this case, the circular cylinder493

diameter is D = 3.18h, and the wave amplitude is A = 0.44h. The wave force494

and time are given in dimensionless form following Eq. (4).495

In this comparison, both the GN and the Boussinesq models have slightly496

overestimated the maximum and minimum values of the wave force, although497

the GN equations are in closer agreement with the laboratory experiments.498

Such discrepancy between the results of the GN and the Boussinesq models499

with the laboratory measurements of Yates and Wang (1994) was previously500

reported by Neill and Ertekin (1997), and was also observed by Yates and501

Wang (1994) who compared results of their Boussinesq model with their own502

laboratory measurements.503

The laboratory experiments are conducted in a very small scale, and in504

water depth of h = 4cm. The viscous effected, neglected in the inviscid the-505

oretical models discussed here, may be noticeable at such small scales. Such506

effects play a significant role on the slight differences between results. More-507

over, the theoretical models are executed for the nominal wave amplitude of508

A = 0.44h corresponding to A = 1.76cm. Any small difference between the509

wave amplitudes of the laboratory measurements and the theoretical models510

would result in some differences in the wave forces. In the absence of any pre-511

sentation of the undisturbed solitary waves in Yates and Wang (1994), this is512

possibly another reason of the discrepancy, particularly noting that the trav-513

eling speed of the wave in the laboratory is smaller than the two theories; see514

the differences of the time of the force troughs in Fig.2. Recall from Eq. (16)515

that solitary wave speed increases with larger wave amplitudes.516

A comparison of the time series of the solitary wave force on a vertical517

cylinder calculated by the GN and the gB models, with existing theoretical518

solutions is shown in Fig. 3. In this case, the cylinder diameter is D = 4.0h519

and the wave amplitude is A = 0.5h. In this comparison, the results of the520

GN and the Boussinesq models are in good agreement with other theoretical521

solutions, and fall between the BEM solution of Yang and Ertekin (1992) and522

the gB model of Wang et al. (1992). The peak of the solitary wave force of523

the GN model is in very close agreement with the BEM results, and is slightly524

smaller than the Boussinesq results.525
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Experiments (Yates and Wang 1994)
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Boussinesq

Fig. 2 Comparison of time series of solitary wave force on a single, vertical cylinder calcu-
lated by the GN and gB equations versus the laboratory experiments of Yates and Wang
(1994). A = 0.44h and D = 3.18h.

The analytical solution of Isaacson (1978) of wave force on the vertical526

cylinder has underestimated the force amplitude when compared to other so-527

lutions. In contrast, the Boussinesq model results of Wang et al. (1992) over528

estimates the force amplitude when compared to other results. Such overesti-529

mation appears to be due to the error associated to the mesh and the numerical530

solution of the equations. As discussed by Neill (1996), the wave run-up on the531

cylinder, and consequently the peak of the solitary wave forces, would increase532

if grid repulsion is not used, as in the Boussinseq model of Wang et al. (1992).533

The use of the grid repulsion improves the grid line orthogonality along the534

curved boundaries. The larger wave run-up in the Wang et al. (1992) model,535

also causes a larger wave reflection, resulting in smaller force trough when536

compared with the Boussinesq model discussed here, see Fig. 3.537

Further results and discussion of the GN and the gB models on solitary538

wave interaction with a single cylinder can be found in Neill and Ertekin539

(1997).540

7.2 Solitary Wave Interaction with Two Cylinders541

The two cylinder solitary wave case also uses the same 4.0h diameter cylinder542

and 0.5h wave amplitude used before. This allows direct comparison with543
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t̄

0 5 10 15 20 25 30 35 40

F̄

-2

-1

0
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2 Closed form (Isaacson 1978)
BEM (Yang and Ertekin 1992)
Boussinesq (Wang et al. 1992)
GN
Boussinesq (present)

Fig. 3 Comparison of time series of solitary wave force on a single, vertical cylinder cal-
culated by the GN and gB equations and existing theoretical solutions. A = 0.5h and
D = 4.0h.

Wang and Jiang (1994) who used the gB equations to study this configuration.544

Various spacings are used between the cylinders. In this section, the spacings545

used are 0.50D, 0.75D, 1.00D, 2.00D and 3.00D, where D, the diameter of546

the cylinder, is the same for both cylinders. The spacing between the two547

cylinders is measured as the closest distance between the cylinders. This is the548

same definition for spacing used by Wang and Jiang (1994). These spacings549

correspond to distances from the wave maker to the second cylinder center of550

28h, 29h, 30h, 34h and 38h, respectively. Wang and Jiang (1994) also used the551

spacings of 0.0D and 0.25D. For the S = 0.0D spacing, the cylinder surfaces552

are in direct contact with each other.553

Sample snapshots of the solitary wave surface elevations, calculated by554

the gB and the GN equations, are shown in Figs. 4 and 5, respectively. The555

resultant forces and moments in our study are shown in Figs. 6 and 7 for the556

gB equations and in Figs. 8 and 9. for the GN equations. Note that, the single557

cylinder results are also shown in these figures.558

In general, the GN equations predict less shielding than the gB equations.559

Shielding is the reduction in force and moment on the downwave cylinder560

caused by the interaction of the waves on the upwave cylinder. The gB equa-561

tions predict a greater run-up on the first cylinder. This greater run-up causes562

more significant wave reflection and therefore there is a greater reduction in563
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Fig. 4 3-D snapshots of solitary wave surface elevation around two cylinders, calculated by
the gB equations, S = 1.0D,D = 4.0h and H = 0.5h.

Fig. 5 3-D snapshots of solitary wave surface elevation around two cylinders, calculated by
the GN equations, S = 1.0D,D = 4.0h and H = 0.5h.

the wave amplitude downwave of the cylinder, and hence a greater reduction564

in the resulting force on the downwave cylinder.565

The shielding described by Wang and Jiang (1994) is similar to the shield-566

ing found in this study. After the wave impacts the first cylinder, a 3-dimensional567

back-scattered wave emerges in front of the first cylinder. The primary wave568

deforms behind the first cylinder with a reduced wave amplitude. Therefore,569

the wave runup, force and moment are less for the second cylinder than the570
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Fig. 6 Solitary wave forces on the (a)first and (b)second cylinder, for the two cylinder case,
calculated by the gB equations, H = 0.5h,D = 4.0h.

Fig. 7 Solitary wave moment on the (a)first and (b)second cylinder, for the two cylinder
case, calculated by the gB equations, H = 0.5h,D = 4.0h.

first. The gB solution in this study consistently produces similar result to that571

of Wang and Jiang (1994), see Figs. 6 and 7. The small differences may be572

due to the lack of boundary orthogonality control in Wang and Jiang (1994)573

which causes the peak force value to be over-predicted. In both this study and574

Wang and Jiang (1994), the maximum force on the first cylinder is unaffected575

by the presence of the second cylinder. The maximum force on the second576

cylinder (Fmax = 1.60), calculated by the gB equations in this study, is 21.6%577
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Fig. 8 Solitary wave forces on the (a)first and (b)second cylinder, for the two cylinder case,
calculated by the GN equations, H = 0.5h,D = 4.0h.

Fig. 9 Solitary wave moment on the (a)first and (b)second cylinder, for the two cylinder
case, calculated by the GN equations, H = 0.5h,D = 4.0h.

smaller than that of the single cylinder case because of the presence of the578

first cylinder; the second cylinder is effectively shielded by the first cylinder.579

In general, smaller distances between the cylinders leads to greater shield-580

ing and more force and moment reduction on the second cylinder as expected.581

A notable exception to this rule is the spacings of 0.0D and 0.25D used in582

Wang and Jiang (1994). For these spacings, there is a noticeable increase in583

both the maximum wave force on the second cylinder and the maximum neg-584
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ative wave force on the first cylinder. This effect is also seen to a much smaller585

extent in the 0.5D spacing as shown in Figs. 6-8. The 0.0D and 0.25D spac-586

ings are not included in this work. It is concluded that sufficient boundary587

orthogonality control could not be produced for these small spacings to pro-588

duce more accurate results. It is unclear how much the forces of the 0.0D and589

0.25D spacings causes calculated in Wang and Jiang (1994) were affected by590

any numerical error. The overturning moment on the cylinders show similar591

behaviour to the wave-induced horizontal force.592

The GN solution shows much less reduction in the maximum force (Fmax=593

1.48, 11.4% reduction) for the second cylinder, see Figs. 8 and 9. In general, the594

shielding does become more pronounced, and the resulting force and moment595

on the second cylinder are reduced as the cylinder spacing is reduced. It should596

be noted that, although the force and moment reduction on the second cylinder597

is less for the GN solution, the actual force and moment on the second cylinder598

is still less than the equivalent force for the gB case. This is the result of the599

greater force and moment in the gB case, for the single cylinder.600

7.3 Solitary Wave Interaction with Three Cylinders601

For this case, a third cylinder with identical dimensions is added to the row.602

The 0.5h wave amplitude and 4.0h cylinder diameter are used again. The603

spacing between the second and third cylinders is equal to the spacing between604

the first and second cylinders. These spacings, 0.50D, 0.75D, 1.00D, 2.00D605

and 3.00D correspond to distances from the wave maker to the third cylinder606

center of 34h, 36h, 38h, 46h and 54h, respectively.607

Samples of the solitary wave surface elevations for the three cylinder case,608

calculated by the gB and the GN equations, are shown in Figs. 10 and 11,609

respectively. The resulting forces and moments from the gB equations are610

shown in Figs. 12, 13 and 14. The resulting forces and moments from the GN611

equations are shown in Figs. 15, 16 and 17.612

For both the gB and the GN equations, the forces and moment on the first613

and second cylinders of the three-cylinder case, see Figs. 12-17, are almost614

identical to those of the two-cylinder case, see Figs. 6-9. For both the gB and615

the GN equations, the force on the third cylinder is further reduced, see Figs616

12, 14, 16 and 17. As in the two-cylinder case, the maximum force reduction617

on the third cylinder is greater for the gB equations (Fmax = 1.42, 30.4%618

reduction) than for the GN equations (Fmax = 1.40, 16.2% reduction). The619
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Fig. 10 3-D snapshots of solitary wave surface elevation around three cylinders, calculated
by the gB equations, S = 1.0D,D = 4.0h and H = 0.5h.

Fig. 11 3-D snapshots of solitary wave surface elevation around three cylinders, calculated
by the GN equations, S = 1.0D,D = 4.0h and H = 0.5h.

force and moment on the third cylinder, calculated by the gB equations, are620

similar in value to those of the GN equations. This is the result of the greater621

single-cylinder force and moment, and the greater force and moment reduction622

for the gB equations.623
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Fig. 12 Solitary wave forces and moments on the first cylinder of the three cylinder case,
calculate by the gB equations, H = 0.5h,D = 4.0h.

Fig. 13 Solitary wave forces and moments on the second cylinder of the three cylinder case,
calculate by the gB equations, H = 0.5h,D = 4.0h.

7.4 Further Discussion on Solitary Wave Forces624

The maximum forces resulting from solitary waves for the one, two and the625

three cylinder cases are shown in Figs. 18, 19 and 20. The single cylinder case626

corresponds to (S/D) → ∞. The maximum force is the maximum absolute627

value of the horizontal force acting on the individual cylinders. The gB equa-628

tions, both in this study and in the earlier study of Wang and Jiang (1994),629
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Fig. 14 Solitary wave forces and moments on the third cylinder of the three cylinder case,
calculate by the gB equations, H = 0.5h,D = 4.0h.

Fig. 15 Solitary wave forces and moments on the first cylinder of the three cylinder case,
calculate by the GN equations, H = 0.5h,D = 4.0h.

showed that the upwave cylinders effectively shielded the downwave cylinders;630

see Figs. 19 and 20. The shielding effect is also predicted by the GN equa-631

tions, however, in smaller magnitude. Since the GN equations are in closer632

agreement with the experimental data, it is anticipated that the gB equations633

over-predict the amount of shielding. The closer the cylinders are together,634

the greater the shielding and the greater the reductions are. The third cylin-635
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Fig. 16 Solitary wave forces and moments on the second cylinder of the three cylinder case,
calculate by the GN equations, H = 0.5h,D = 4.0h.

Fig. 17 Solitary wave forces and moments on the third cylinder of the three cylinder case,
calculate by the GN equations, H = 0.5h,D = 4.0h.

der receives more shielding than the second cylinder. The downwave cylinders636

have negligible effect on the upwave cylinders.637

8 Concluding Remarks638

The problem of interaction of solitary waves with multiple in-line fixed, verti-639

cal, circular cylinders in shallow water is studied by use of the Green-Naghdi640
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Fig. 18 Solitary wave maximum forces on the first cylinder, for one, two and three cylinders
cases, versus cylinder spacing, H = 0.5h and D = 4.0h
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Fig. 19 Solitary wave maximum forces on the second cylinder, for one, two and three
cylinders cases, versus cylinder spacing, H = 0.5h and D = 4.0h
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Fig. 20 Solitary wave maximum forces on the third cylinder, for one, two and three cylinders
cases, versus cylinder spacing, H = 0.5h and D = 4.0h

equations and the Boussinesq equations. The solution is formulated using a641

boundary-fitted curvilinear coordinate system that allows utilizing a finite-642

difference method in solving the problem. The wave-induced horizontal force643

and the overturning moment are obtained by integrating the pressure around644

the vertical cylinders. In the model developed based on the Green-Naghdi645

equations, the total pressure distribution around the vertical cylinders is ob-646

tained assuming a linear distribution of pressure over the water column. Ac-647

curacy and error associated with the numerical calculations can be assessed648

by monitoring the mass and moment throughout the computations.649

Overall, close agreement is observed between the results of the Green-650

Naghdi equations and the Boussinesq equations with laboratory measurements651

and existing theoretical solutions. The performance of the Green-Naghdi equa-652

tions is found to be generally better than the Boussinesq equations. They pro-653

duce values for the forces and the moments that are in slightly closer agreement654

with both the experimental data and other predictions. The results of the GN655

equations and the Boussinesq equations are in closer agreement for smaller656

cylinder spacings.657



Auth
or 

ac
ce

pte
d m

an
us

cri
pt 

 

Not 
co

py
ed

ite
d b

y t
he

 jo
urn

al

Solitary Wave Diffraction by Vertical Cylinders 33

It is found that the presence of the second and third cylinders on the wave658

loads on all cylinders is significant in general. In a number of cases studied here,659

the resultant loads on the first cylinder has increased due to the second and660

third cylinders. Such effect is found to be a function of the distance between661

the cylinders. This is in qualitative agreement with the results obtained for662

wave interaction with an array of vertical cylinders in deep water. In all cases,663

however, the first cylinder has provided shielding effect and the maximum664

forces on the second and third cylinders are smaller than that on the first665

cylinder. The shielding effect increases as the distance between the cylinders666

decreases.667

The Green-Naghdi equations cannot possess a moment equation, or an668

equation for the pressure as a function of the water depth that can be used to669

produce the moment. It is shown in this study that the Green-Naghdi equa-670

tions can produce accurate predictions of moments when a linear distribution671

of pressure with depth is assumed. The associated error to this assumption is672

calculated and found to be negligible. The agreement between the moments673

calculated through the Green-Naghdi equations and the generalized Boussi-674

nesq equations is comparable to the agreement between the forces determined675

by these methods, and the results are in good agreement with measurements676

and analysis of laboratory experiments. Note that the assumption of linear677

pressure variation over depth does not mean that the pressure is hydrostatic.678

It is noted that it should be possible to solve the same physical problem by679

use of higher levels of the GN equations that possess better nonlinearity and680

dispersive characteristics, however, at a much greater computational effort.681
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