24,202 research outputs found

    Preparation and photoemission investigation of bulk-like a-Mn films on W(110)

    Get PDF
    We report the successful stabilization of a thick bulk-like, distorted α\alpha-Mn film with (110) orientation on a W(110) substrate. The observed (3×3)(3\times3) overstructure for the Mn film with respect to the original W(110) low-energy electron diffraction pattern is consistent with the presented structure model. The possibility to stabilize such a pseudomorphic Mn film is supported by density functional total energy calculations. Angle-resolved photoemission spectra of the stabilized α\alpha-Mn(110) film show weak dispersions of the valence band electronic states in accordance with the large unit cell.Comment: 11 pages; 5 figure

    Next Generation Higgs Bosons: Theory, Constraints and Discovery Prospects at the Large Hadron Collider

    Get PDF
    Particle physics model building within the context of string theory suggests that further copies of the Higgs boson sector may be expected. Concerns regarding tree-level flavor changing neutral currents are easiest to allay if little or no couplings of next generation Higgs bosons are allowed to Standard Model fermions. We detail the resulting general Higgs potential and mass spectroscopy in both a Standard Model extension and a supersymmetric extension. We present the important experimental constraints from meson-meson mixing, loop-induced bsγb\to s\gamma decays and LEP2 direct production limits. We investigate the energy range of valid perturbation theory of these ideas. In the supersymmetric context we present a class of examples that marginally aids the fine-tuning problem for parameter space where the lightest Higgs boson mass is greater than the Standard Model limit of 114 GeV. Finally, we study collider physics signatures generic to next generation Higgs bosons, with special emphasis on AhhhZ4b+2lAh\to hhZ\to 4b+2l signal events, and describe the capability of discovery at the Large Hadron Collider.Comment: 43 pages, 12 figures; v3: minor corrections, published in Physical Review

    Nonlinear projective filtering in a data stream

    Full text link
    We introduce a modified algorithm to perform nonlinear filtering of a time series by locally linear phase space projections. Unlike previous implementations, the algorithm can be used not only for a posteriori processing but includes the possibility to perform real time filtering in a data stream. The data base that represents the phase space structure generated by the data is updated dynamically. This also allows filtering of non-stationary signals and dynamic parameter adjustment. We discuss exemplary applications, including the real time extraction of the fetal electrocardiogram from abdominal recordings.Comment: 8 page

    Linear independence of localized magnon states

    Full text link
    At the magnetic saturation field, certain frustrated lattices have a class of states known as "localized multi-magnon states" as exact ground states. The number of these states scales exponentially with the number NN of spins and hence they have a finite entropy also in the thermodynamic limit NN\to \infty provided they are sufficiently linearly independent. In this article we present rigorous results concerning the linear dependence or independence of localized magnon states and investigate special examples. For large classes of spin lattices including what we called the orthogonal type and the isolated type as well as the kagom\'{e}, the checkerboard and the star lattice we have proven linear independence of all localized multi-magnon states. On the other hand the pyrochlore lattice provides an example of a spin lattice having localized multi-magnon states with considerable linear dependence.Comment: 23 pages, 6 figure

    VELOX – A Demonstration Facilility for Lunar Oxygen Extraction in a Laboratory Environment

    Get PDF
    The ultimate goal of a permanent human presence on the Moon is discussed intensively within the global lunar community. Obviously, such an effort poses stringent demands not only on the technology but also on logistics, especially considering the important aspects of masses and volume for materials and replenishments of consumables. On-site propellant production (i.e. liquid oxygen) is one of the main needs and would lead to more efficient return-to-Earth or further exploration missions. Additionally, the supply of breathable air and water for the survival of the crew on the lunar surface is also a major aspect. Thus, large effort is put into the development and research of technologies for in-situ resources utilization (ISRU) to drastically reduce the required supply from Earth and to increase the level of autonomy of a lunar outpost. The major resource on the Moon for such a purpose is regolith, which covers the first meters of the lunar surface and contains about 45% of mineralogically bounded Oxygen in terms of mass. By using adequate processing methods of this material, one could be able to extract valuable minerals and volatiles for further utilization. At DLR Bremen a compact and flexible lab experimenting facility has been developed, built and tested, which shall demonstrate the feasibility of the process by extracting oxygen out of lunar regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, important boundary conditions have been investigated such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility, which shall be analyzed within this paper. Since it is one of the most elaborated chemical processes regarding ISRU and has comparably low temperature and energy constraints it has been primarily concentrated on the Hydrogen-reduction process which reduces the iron oxide component of Ilmenite (FeTiO3) within the lunar regolith. Based on the obtained results, a first line-out of a planned superior test set-up and infrastructure with pre- and post-processing units such as feeding and extraction is also presented, as well as an analysis of reaction products with common methods. This paper will present the first results of DLR efforts regarding these topics. Finally, important aspects of the future development of the processes and technologies are discussed with special consideration of lunar applicability and with respect to environmental conditions as well as mass and energy constraints

    Prospects for Observing an Invisibly Decaying Higgs Boson in the t anti-t H Production at the LHC

    Full text link
    The prospects for observing an invisibly decaying Higgs boson in the t anti-t H production at LHC are discussed. An isolated lepton, reconstructed hadronic top-quark decay, two identified b-jets and large missing transverse energy are proposed as the final state signature for event selection. Only the Standard Model backgrounds are taken into account. It is shown that the t anti-t Z, t anti-t W, b anti-b Z and b anti-b W backgrounds can individually be suppressed below the signal expectation. The dominant source of background remains the t anti-t production. The key for observability will be an experimental selection which allows further suppression of the contributions from the t anti-t events with one of the top-quarks decaying into a tau lepton. Depending on the details of the final analysis, an excess of the signal events above the Standard Model background of about 10% to 100% can be achieved in the mass range m_H= 100-200 GeV.Comment: Final version as accepted by EPJ

    Production of tau tau jj final states at the LHC and the TauSpinner algorithm: the spin-2 case

    Full text link
    The TauSpinner algorithm is a tool that allows to modify the physics model of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, but without the need of re-generating events. With the help of weights τ\tau-lepton production or decay processes can be modified accordingly to a new physics model. In a recent paper a new version TauSpinner ver.2.0.0 has been presented which includes a provision for introducing non-standard states and couplings and study their effects in the vector-boson-fusion processes by exploiting the spin correlations of τ\tau-lepton pair decay products in processes where final states include also two hard jets. In the present paper we document how this can be achieved taking as an example the non-standard spin-2 state that couples to Standard Model particles and tree-level matrix elements with complete helicity information included for the parton-parton scattering amplitudes into a τ\tau-lepton pair and two outgoing partons. This implementation is prepared as the external (user provided) routine for the TauSpinner algorithm. It exploits amplitudes generated by MadGraph5 and adopted to the TauSpinner algorithm format. Consistency tests of the implemented matrix elements, reweighting algorithm and numerical results for observables sensitive to τ\tau polarization are presented.Comment: 17 pages, 6 figures; version published in EPJ

    Application of a trace formula to the spectra of flat three-dimensional dielectric resonators

    Full text link
    The length spectra of flat three-dimensional dielectric resonators of circular shape were determined from a microwave experiment. They were compared to a semiclassical trace formula obtained within a two-dimensional model based on the effective index of refraction approximation and a good agreement was found. It was necessary to take into account the dispersion of the effective index of refraction for the two-dimensional approximation. Furthermore, small deviations between the experimental length spectrum and the trace formula prediction were attributed to the systematic error of the effective index of refraction approximation. In summary, the methods developed in this article enable the application of the trace formula for two-dimensional dielectric resonators also to realistic, flat three-dimensional dielectric microcavities and -lasers, allowing for the interpretation of their spectra in terms of classical periodic orbits.Comment: 13 pages, 12 figures, 1 tabl

    Localized-magnon states in strongly frustrated quantum spin lattices

    Get PDF
    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones.Comment: 21 pages, 10 figures, invited paper for a special issue of "Low Temperature Physics " dedicated to the 70-th anniversary of creation of concept "antiferromagnetism" in physics of magnetis
    corecore