64 research outputs found

    Cerebellar transcranial magnetic stimulation : the role of coil geometry and tissue depth

    Get PDF
    BACKGROUND: While transcranial magnetic stimulation (TMS) coil geometry has important effects on the evoked magnetic field, no study has systematically examined how different coil designs affect the effectiveness of cerebellar stimulation. HYPOTHESIS: The depth of the cerebellar targets will limit efficiency. Angled coils designed to stimulate deeper tissue are more effective in eliciting cerebellar stimulation. METHODS: Experiment 1 examined basic input–output properties of the figure-of-eight, batwing and double-cone coils, assessed with stimulation of motor cortex. Experiment 2 assessed the ability of each coil to activate cerebellum, using cerebellar-brain inhibition (CBI). Experiment 3 mapped distances from the scalp to cerebellar and motor cortical targets in a sample of 100 subjects' structural magnetic resonance images. RESULTS: Experiment 1 showed batwing and double-cone coils have significantly lower resting motor thresholds, and recruitment curves with steeper slopes than the figure-of-eight coil. Experiment 2 showed the double-cone coil was the most efficient for eliciting CBI. The batwing coil induced CBI only at higher stimulus intensities. The figure-of-eight coil did not elicit reliable CBI. Experiment 3 confirmed that cerebellar tissue is significantly deeper than primary motor cortex tissue, and we provide a map of scalp-to-target distances. CONCLUSIONS: The double-cone and batwing coils designed to stimulate deeper tissue can effectively stimulate cerebellar targets. The double-cone coil was found to be most effective. The depth map provides a guide to the accessible regions of the cerebellar volume. These results can guide coil selection and stimulation parameters when designing cerebellar TMS studies

    The role of somatosensation in automatic visuo-motor control: a comparison of congenital and acquired sensory loss.

    Get PDF
    Studies of chronically deafferented participants have illuminated how regaining some motor control after adult-onset loss of proprioceptive and touch input depends heavily on cognitive control. In this study we contrasted the performance of one such man, IW, with KS, a woman born without any somatosensory fibres. We postulated that her life-long absence of proprioception and touch might have allowed her to automate some simple visually-guided actions, something IW appears unable to achieve. We tested these two, and two age-matched control groups, on writing and drawing tasks performed with and without an audio-verbal echoing task that added a cognitive demand. In common with other studies of skilled action, the dual task was shown to affect visuo-motor performance in controls, with less well-controlled drawing and writing, evident as increases in path speed and reduction in curvature and trial duration. We found little evidence that IW was able to automate even the simplest drawing tasks and no evidence for automaticity in his writing. In contrast, KS showed a selective increase in speed of signature writing under the dual-task conditions, suggesting some ability to automate her most familiar writing. We also tested tracing of templates under mirror-reversed conditions, a task that imposes a powerful cognitive planning challenge. Both IW and KS showed evidence of a visuo-motor planning conflict, as did the controls, for shapes with sharp corners. Overall, IW was much faster than his controls to complete tracing shapes, consistent with an absence of visuo-proprioceptive conflict, whereas KS was slower than her controls, especially as the corners became sharper. She dramatically improved after a short period of practice while IW did not. We conclude that KS, who developed from birth without proprioception, may have some visually derived control of movement not under cognitive control, something not seen in IW. This allowed her to automate some writing and drawing actions, but impaired her initial attempts at mirror-tracing. In contrast, IW, who lost somatosensation as an adult, cannot automate these visually guided actions

    Perception of body shape and size without touch or proprioception: evidence from individuals with congenital and acquired neuropathy.

    Get PDF
    The degree to which mental representations of the body can be established and maintained without somatosensory input remains unclear. We contrast two "deafferented" adults, one who acquired large fibre sensory loss as an adult (IW) and another who was born without somatosensation (KS). We compared their responses to those of matched controls in three perceptual tasks: first accuracy of their mental image of their hands (assessed by testing recognition of correct hand length/width ratio in distorted photographs and by locating landmarks on the unseen hand); then accuracy of arm length judgements (assessed by judgement of reaching distance), and finally, we tested for an attentional bias towards peri-personal space (assessed by reaction times to visual target presentation). We hypothesised that IW would demonstrate responses consistent with him accessing conscious knowledge, whereas KS might show evidence of responses dependent on non-conscious mechanisms. In the first two experiments, both participants were able to give consistent responses about hand shape and arm length, but IW displayed a better awareness of hand shape than KS (and controls). KS demonstrated poorer spatial accuracy in reporting hand landmarks than both IW and controls, and appears to have less awareness of her hands. Reach distance was overestimated by both IW and KS, as it was for controls; the precision of their judgements was slightly lower than that of the controls. In the attentional task, IW showed no reaction time differences across conditions in the visual detection task, unlike controls, suggesting that he has no peri-personal bias of attention. In contrast, KS did show target location-dependent modulation of reaction times, when her hands were visible. We suggest that both IW and KS can access a conscious body image, although its accuracy may reflect their different experience of hand action. Acquired sensory loss has deprived IW of any subconscious body awareness, but the congenital absence of somatosensation may have led to its partial replacement by a form of visual proprioception in KS

    Loss of haptic feedback impairs control of hand posture: a study in chronically deafferented individuals when grasping and lifting objects.

    Get PDF
    Previous work has highlighted the role of haptic feedback for manual dexterity, in particular for the control of precision grip forces between the index finger and thumb. It is unclear how fine motor skills involving more than just two digits might be affected, especially given that loss of sensation from the hand affects many neurological patients, and impacts on everyday actions. To assess the functional consequences of haptic deficits on multi-digit grasp of objects, we studied the ability of three rare individuals with permanent large-fibre sensory loss involving the entire upper limb. All three reported difficulties in everyday manual actions (ABILHAND questionnaire). Their performance in a reach-grasp-lift task was compared to that of healthy controls. Twenty objects of varying shape, mass, opacity and compliance were used. In the reach-to-grasp phase, we found slower movement, larger grip aperture and less dynamic modulation of grip aperture in deafferented participants compared to controls. Hand posture during the lift phase also differed; deafferented participants often adopted hand postures that may have facilitated visual guidance, and/or reduced control complexity. For example, they would extend fingers that were not in contact with the object, or fold these fingers into the palm of the hand. Variability in hand postures was increased in deafferented participants, particularly for smaller objects. Our findings provide new insights into how the complex control required for whole hand actions is compromised by loss of haptic feedback, whose contribution is, thus, highlighted

    Does Proprioception Influence Human Spatial Cognition? A Study on Individuals With Massive Deafferentation.

    Get PDF
    When navigating in a spatial environment or when hearing its description, we can develop a mental model which may be represented in the central nervous system in different coordinate systems such as an egocentric or allocentric reference frame. The way in which sensory experience influences the preferred reference frame has been studied with a particular interest for the role of vision. The present study investigated the influence of proprioception on human spatial cognition. To do so, we compared the abilities to form spatial models of two rare participants chronically deprived of proprioception (GL and IW) and healthy control participants. Participants listened to verbal descriptions of a spatial environment, and their ability to form and use a mental model was assessed with a distance-comparison task and a free-recall task. Given that the loss of proprioception has been suggested to specifically impair the egocentric reference frame, the deafferented individuals were expected to perform worse than controls when the spatial environment was described in an egocentric reference frame. Results revealed that in both tasks, one deafferented individual (GL) made more errors than controls while the other (IW) made less errors. On average, both GL and IW were slower to respond than controls, and reaction time was more variable for IW. Additionally, we found that GL but not IW was impaired compared to controls in visuo-spatial imagery, which was assessed with the Minnesota Paper Form Board Test. Overall, the main finding of this study is that proprioception can influence the time necessary to use spatial representations while other factors such as visuo-spatial abilities can influence the capacity to form accurate spatial representations

    Precambrian non-marine stromatolites in alluvial fan deposits, the Copper Harbor Conglomerate, upper Michigan

    Full text link
    Laminated cryptalgal carbonates occur in the Precambrian Copper Harbor Conglomerate of northern Michigan, which was deposited in the Keweenawan Trough, an aborted proto-oceanic rift. This unit is composed of three major facies deposited by braided streams on a large alluvial-fan complex. Coarse clastics were deposited in braided channels, predominantly as longitudinal bars, whereas cross-bedded sandstones were deposited by migrating dunes or linguoid bars. Fine-grained overbank deposits accumulated in abandoned channels. Gypsum moulds and carbonate-filled cracks suggest an arid climate during deposition. Stromatolites interstratified with these clastic facies occur as laterally linked drapes over cobbles, as laterally linked contorted beds in mudstone, as oncolites, and as poorly developed mats in coarse sandstones. Stromatolites also are interbedded with oolitic beds and intraclastic conglomerates. Stromatolitic microstructure consists of alternating detrital and carbonate laminae, and open-space structures. Radial-fibrous calcite fans are superimposed on the laminae. The laminae are interpreted as algal in origin, whereas the origin of the radial fibrous calcite is problematic. The stromatolites are inferred to have grown in lakes which occupied abandoned channels on the fan surface. Standing water on a permeable alluvial fan in an arid climate requires a high water table maintained by high precipitation, or local elevation of the water table, possibly due to the close proximity of a lake. Occurrence of stromatolites in the upper part of the Copper Harbor Conglomerate near the base of the lacustrine Nonesuch Shale suggests that these depositional sites may have been near the Nonesuch Lake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72022/1/j.1365-3091.1983.tb00713.x.pd

    Differentiation between external and internal cuing: An fMRI study comparing tracing with drawing

    No full text
    Externally cued movement is thought to preferentially involve cerebellar and premotor circuits whereas internally generated movement recruits basal ganglia, pre-supplementary motor cortex (pre-SMA) and dorsolateral prefrontal cortex (DLPFC). Tracing and drawing are exemplar externally and internally guided actions and Parkinson's patients and cerebellar patients show deficits in tracking and drawing, respectively. In this study we aimed to examine this external/internal distinction in healthy subjects using functional imaging. Ten healthy subjects performed tracing and drawing of simple geometric shapes using pencil and paper while in a 3-T fMRI scanner. Results indicated that compared to tracing, drawing generated greater activation in the right cerebellar crus I, bilateral pre-SMA, right dorsal premotor cortex and right frontal eye field. Tracing did not recruit any additional activation compared to drawing except in striate and extrastriate visual areas. Therefore, drawing recruited areas more frequently associated with cognitively challenging tasks, attention and memory, but basal ganglia and cerebellar activity did not differentiate tracing from drawing in the hypothesised manner. As our paradigm was of a simple, repetitive and static design, these results suggest that the task familiarity and the temporal nature of visual feedback in tracking tasks, compared to tracing, may be important contributing factors towards the degree of cerebellar involvement. Future studies comparing dynamic with static external cues and visual feedback may clarify the role of the cerebellum and basal ganglia in the visual guidance of drawing actions
    • 

    corecore