39,733 research outputs found

    Computing Replenishment Cycle Policy under Non-stationary Stochastic Lead Time

    Get PDF

    Technical quality assessment of an optoelectronic system for movement analysis

    Get PDF
    The Optoelectronic Systems (OS) are largely used in gait analysis to evaluate the motor performances of healthy subjects and patients. The accuracy of marker trajectories reconstruction depends on several aspects: the number of cameras, the dimension and position of the calibration volume, and the chosen calibration procedure. In this paper we propose a methodology to evaluate the eects of the mentioned sources of error on the reconstruction of marker trajectories. The novel contribution of the present work consists in the dimension of the tested calibration volumes, which is comparable with the ones normally used in gait analysis; in addition, to simulate trajectories during clinical gait analysis, we provide non-default paths for markers as inputs. Several calibration procedures are implemented and the same trial is processed with each calibration le, also considering dierent cameras congurations. The RMSEs between the measured trajectories and the optimal ones are calculated for each comparison. To investigate the signicant dierences between the computed indices, an ANOVA analysis is implemented. The RMSE is sensible to the variations of the considered calibration volume and the camera congurations and it is always inferior to 43 mm

    Computing replenishment cycle policy parameters for a perishable item

    Get PDF
    In many industrial environments there is a significant class of problems for which the perishable nature of the inventory cannot be ignored in developing replenishment order plans. Food is the most salient example of a perishable inventory item. In this work, we consider the periodic-review, single-location, single-product production/inventory control problem under non-stationary stochastic demand and service level constraints. The product we consider can be held in stock for a limited amount of time after which it expires and it must be disposed of at a cost. In addition to wastage costs, our cost structure comprises fixed and unit variable ordering costs, and inventory holding costs. We propose an easy-to-implement replenishment cycle inventory control policy that yields at most 2N control parameters, where N is the number of periods in our planning horizon. We also show, on a simple numerical example, the improvement brought by this policy over two other simpler inventory control rules of common use

    Quantum Properties of a Which-Way Detector

    Full text link
    We explore quantum properties of a which-way detector using three versions of an idealized two slit arrangements. Firstly we derive complementarity relations for the detector; secondly we show how the "experiment" may be altered in such a way that using single position measurement on the screen we can obtain quantum erasure. Finally we show how to construct a superposition of "wave" and "particle" components

    Coherent phenomena in semiconductors

    Full text link
    A review of coherent phenomena in photoexcited semiconductors is presented. In particular, two classes of phenomena are considered: On the one hand the role played by optically-induced phase coherence in the ultrafast spectroscopy of semiconductors; On the other hand the Coulomb-induced effects on the coherent optical response of low-dimensional structures. All the phenomena discussed in the paper are analyzed in terms of a theoretical framework based on the density-matrix formalism. Due to its generality, this quantum-kinetic approach allows a realistic description of coherent as well as incoherent, i.e. phase-breaking, processes, thus providing quantitative information on the coupled ---coherent vs. incoherent--- carrier dynamics in photoexcited semiconductors. The primary goal of the paper is to discuss the concept of quantum-mechanical phase coherence as well as its relevance and implications on semiconductor physics and technology. In particular, we will discuss the dominant role played by optically induced phase coherence on the process of carrier photogeneration and relaxation in bulk systems. We will then review typical field-induced coherent phenomena in semiconductor superlattices such as Bloch oscillations and Wannier-Stark localization. Finally, we will discuss the dominant role played by Coulomb correlation on the linear and non-linear optical spectra of realistic quantum-wire structures.Comment: Topical review in Semiconductor Science and Technology (in press) (Some of the figures are not available in electronic form
    • …
    corecore