
A Sample Average Approximation Approach for
Event-Driven Probabilistic Constraint

Programming?

Roberto Rossi,1 S. Armagan Tarim,2 Brahim Hnich,3 and Steven Prestwich2

Centre for Telecommunication Value-Chain Research (CTVR), Ireland1

r.rossi@4c.ucc.ie
Cork Constraint Computation Centre, University College, Cork, Ireland2

{at,s.prestwich}@4c.ucc.ie
Faculty of Computer Science, Izmir University of Economics, Turkey3

brahim.hnich@ieu.edu.tr

Abstract. In this work we augment a known Monte Carlo simulation-
based approach to stochastic discrete optimization problem, the so called
Sample Average Approximation (SAA) method, with a new criterion
to decide when the search has to be stopped. Our approach exploits a
well known and effective sampling technique, Latin Hypercube Sampling
(LHS), and confidence interval analysis, a well established approxima-
tion method in statistics. We apply SAA augmented with LHS and the
new stopping criterion we defined to an Event-Driven Constraint Pro-
gramming model for scheduling under uncertainty. Our computational
experience shows how this technique can not only quickly converge to
near optimal solutions by analyzing small sample sets, but also promptly
decide when the chances of improving the current optimal solution by an-
alyzing larger sample sets are sufficiently low to justify the interruption
of the search process.

1 Introduction

In this paper we propose an effective strategy to compute near-optimal solutions
for optimization models where uncertainty comes into play. In particular we fo-
cus on Event-Driven Probabilistic Constraint Programming (EDP-CP) models.
EDP-CP is a modeling framework proposed by Tarim et al. in [12] that is con-
cerned with the computation of reliable solutions for optimization models under
uncertainty. EDP-CP models can be easily compiled into standard Constraint
Programming (CP) models, nevertheless solving these model is a hard computa-
tional task especially when the set of possible values that random variables may

? The authors wish to thank Mustafa Kemal Dogru and Ulas Ozen, from the supply
chain group in Alcatel-Lucent, Ireland, for the discussion on confidence interval
analysis that motivated this work. This work was supported by Science Foundation
Ireland under Grant No. 03/CE3/I405 as part of the Centre for Telecommunications
Value-Chain-Driven Research (CTVR) and Grant No. 00/PI.1/C075.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29256402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

assume is large. Furthermore most of the time the set of possible values over
which random variables are defined is continuous — for instance one may think
about a job completion time in a probabilistic scheduling problem — and in this
case the authors in [12] proposed to apply a sampling procedure and reduce the
domains of random variables to a finite (and possibly small) set. Unfortunately
no general guidelines have been given to decide how big the sampled set should
be and how good is the solution provided by this set. In this work we try to
answer to these kind of questions by providing an effective solution strategy for
EDP-CP models and, in general, for optimization models under uncertainty. Our
preliminary results show that this technique is promising.

Our work builds on a framework called Sample Average Approximation
(SAA) method. Originally proposed by Kleywegt et al. [7], this method is a
Monte Carlo simulation-based approach to stochastic discrete optimization prob-
lems. The basic idea of this method is that a random sample is generated and an
expected value function is approximated by the corresponding sample average
function. The obtained SAA optimization problem is solved and the procedure is
repeated several times until a stopping criterion is satisfied. The authors proved
this method to be asymptotically complete and in their experiments the method
also appears effective, in the sense that it quickly converges to a nearly optimal
solution. Unfortunately the stopping criteria based on “optimality gap” esti-
mators proposed by the authors are weak, as they remark in their conclusions,
therefore even if the method is clearly effective, typically the sample size needs
to be substantially increased to decide when the best solution found is good
enough. For this reason the search cannot be promptly stopped as soon as a
good solution is reached. Obviously a key factor in the SAA method is to decide
when the sample size used is large enough so that by taking a larger set our
chances of improving our current solution are low.

In this work, we propose a different strategy to decide when the search has to
be stopped. Our method relies on confidence interval analysis, a well established
technique in statistics originally introduced by Neyman [9]. This technique tries
to determine when, during the search process, the chances of improving the
current solution by increasing the sample size fall below a given threshold under a
certain confidence probability. This approach in addition to an effective sampling
strategy known as Latin Hypercube Sampling — also recognized effective in [7]—
provides a valid stopping criterion that is able to limit the size of the sample set
analyzed and to limit the number of replications needed to decide that the search
has to be stopped. Like the method proposed in [7] our method is asymptotically
complete, but in contrast to the SAA method, it lets the user decide what is the
confidence level the algorithm should adopt to state that the optimal solution
found is unlikely to be improved by searching over a larger sample set. Obviously,
by setting a low confidence level we will obtain a low quality solution in a few
runs, while a higher confidence level will improve the quality of the solution
found and will also increase the time required to decide when the search has
to be stopped. Nevertheless, our initial experiments suggest that for reasonable
confidence levels (95% or so) the method can quickly converge to very good

solutions (about 98% of the real problem optimum in average) by analyzing
very small sample sets typically comprising less than 5 samples.

The paper is structured as follows. In Section 2 we recall the EDP-CP frame-
work. In Section 2.1 we describe the EDP-CP model to which we will apply our
solution method. In Section 3 we describe our new confidence interval analysis
based SAA method. In Section 4 we show the effectiveness of our approach. In
Section 5 we draw conclusions and future extensions.

2 Event-Driven Probabilistic Constraint Programming

In this section we recall the EDP-CP modeling framework defined in [12]. In its
most general form, event-driven probabilistic CP supports uncertain parameters
as well as decision variables. A constraint is said to be probabilistic, if it involves
both decision variables and uncertain parameters. We will refer to the possible
values of an uncertain parameter λi as W (λi) and to the probability of λi taking
a given value v in W (λi) as Pr(λi = v). As in [1], we refer to a complete
assignment of uncertain parameters as a possible world and denote by W the
set of all possible worlds. We also assume that the probability of each possible
world w is given by the probability function Pr :W → [0, 1]. Given a probabilistic
constraint c over decision variables and some uncertain parameters, the reduction
of c by world w ∈ W, denoted by c↓w, is the deterministic constraint obtained
by setting all its uncertain parameters as in w.

An EDP-CP is a 9-tuple P = 〈X ,D,Λ,W, E , C,H, Ψ, Pr〉 where:

– X = {x1, . . . , xn} is a set of decision variables;
– D = D1 × . . .×Dn, where Di is the domain of Xi;
– Λ = {λ1, . . . , λl} is a set of uncertain parameters;
– W= W1 × . . .×Wl, where Wi the domain of λi;
– E = {e1, . . . , em} is a set of event constraints. Each ei may either be proba-

bilistic (involving a subset of X and a subset of Λ) or deterministic (involving
only a subset of X);

– C = {c1, . . . , co} is a set of dependency meta-constraints. For each depen-
dency meta-constraint ci : Dependency(e, p, f) we have e ∈E , where p may
be either a probabilistic or a deterministic pre-requisite constraint, and f is
a deterministic condition constraint;

– H= {h1, . . . , hp} is a set of hard constraints. Each hi may either be proba-
bilistic (involving a subset of X and a subset of Λ) or deterministic (involving
only a subset of X);

– Ψ is any expression involving the event realization measures on the event
constraints in E ;

– Pr : W → [0, 1] is a probability distribution over uncertain parameters.

An optimal solution to an EDP-CP P = 〈X ,D,Λ,W, E , C,H, Ψ, Pr〉 is any as-
signment S to the decision variables such that for each h ∈ H, for each w ∈
W, h↓wis satisfied, and there exists no other assignment satisfying all the hard
constraints with a strictly better value for Ψ , according to the Dependency
constraints introduced in the model.

Maximize:∑
i∈I E{ei : si +

∑
m∈M πim ∗ δim ≤ di}

Given that:
Dependency(ei, sj ≥ si +

∑
m∈M πim ∗ δim, σij = 1), ∀i, j ∈ I, i 6= j

Subject to:
si ≥ ri, ∀i ∈ I
σij = 1 ⇒ si < sj , ∀i, j ∈ I, i 6= j∑

m∈M δim = 1, ∀i ∈ I
σij + σji ≥ δim + δjm − 1, ∀m ∈ M, ∀i, j ∈ I, i 6= j
σij + σji ≤ 1, ∀i, j ∈ I, i 6= j∑

i∈I

(∑
m∈M cim ∗ δim

) ≤ B

σij ∈ {0, 1}, ∀i, j ∈ I δim ∈ {0, 1}, ∀i ∈ I, ∀m ∈ M si ∈ [Ls, Le], ∀i ∈ I

Fig. 1. An EDP-CP model for the Probabilistic Sequencing with Release Times and
Deadlines Problem

2.1 An EDP-CP Model for Probabilistic Sequencing with Release
Times and Deadlines

We consider a specific scheduling problem similar to the one considered by
Hooker et. al [3]. Garey and Johnson [2] also mention this problem in their
list of NP-hard problems and they refer to it as “Sequencing with Release Times
and Deadlines”. An optimization version of this scheduling problem was also
described in [6]. The problem consists in finding a least-cost schedule to process
a set of orders I using a set of dissimilar parallel machines M . Processing an
order i ∈ I can only begin after the release date ri and must be completed at
the latest by the due date di. Order i can be processed on any of the machines.
The processing cost and the processing time of order i ∈ I on machine m ∈ M
are cim and pim, respectively. The model just described is fully deterministic,
but we will now consider a generalization of this problem to the case where some
inputs are uncertain. For convenience we will just consider uncertain processing
times πim for order i ∈ I on machine m ∈ M . Nevertheless it is easy to see that
EDP-CP can be also employed to model more complicated generalizations of
this problem where release dates and due dates are uncertain or processing costs
are uncertain. Since EDP-CP is meant to model and optimize the reliability of
a given plan we will no longer look, as the author do in [6], for a least-cost plan,
rather we will optimize a reliability measure expressed in terms of events, as it
is usual in EDP-CP. The specific event whose probability we wish to maximize
is the successful completion of each job within the given time frame defined by
its release and due date. Since jobs are scheduled in sequence on each machine
dependencies will arise between subsequent jobs. We adopt a specific policy that
unschedules a job if this is not processed within the given due date or before
the planned start time of the subsequent job on the respective machine. This
policy guarantees that every order will always start at the planned start time,
since the respective machine will be free and will start processing it. An EDP-
CP model for the problem described is given in Fig. 1. Let us analyze the given

Maximize:∑
i∈I

∑
w∈W ewipw

Subject to:
(σij = 1 ∧ si +

∑
m∈M δimπim↓w > sj) ⇒ ewi = 0, ∀w ∈ W, ∀i, j ∈ I, i 6= j

si +
∑

m∈M δimπim > di ⇒ ewi = 0, ∀w ∈ W, ∀i ∈ I
si ≥ ri, ∀i ∈ I
σij = 1 ⇒ si < sj , ∀i, j ∈ I, i 6= j∑

m∈M δim = 1, ∀i ∈ I
σij + σji ≥ δim + δjm − 1, ∀m ∈ M, ∀i, j ∈ I, i 6= j
σij + σji ≤ 1, ∀i, j ∈ I, i 6= j∑

i∈I

(∑
m∈M cim ∗ δim

) ≤ B

ewi ∈ {0, 1}, ∀w ∈ W, i ∈ I σij ∈ {0, 1}, ∀i, j ∈ I δim ∈ {0, 1}, ∀i ∈ I, ∀m ∈ M si ∈ [Ls, Le], ∀i ∈ I

Fig. 2. A CP equivalent model for the Probabilistic Sequencing with Release Times
and Deadlines Problem

model. There are three sets of decision variables: δim is 1 iff job i is scheduled
on machine m; σij is 1 iff job i precedes job j; and si is the start time of job i.
The objective function maximizes the expected number of tasks completed by
the respective due dates. Dependency constraint states that, when two jobs i, j
are executed in sequence on the same machine (condition σij = 1), job i has to
be completed by its due date (event ei is satisfied) and before the start time of
job j (pre-requisite sj ≥ si+

∑
m∈M πim∗δim). The hard constraints respectively

state that: the start time of job i, si, must be no less than the release time ri for
this job; if job i is processed before job j (σij = 1), then the start time of i, si,
must be less than that of j, sj ; each job must be processed on a machine; if two
jobs i, j are processed on the same machine m (δim = 1 and δjm = 1), either i
is processed before j, σij = 1, or j is processed before i, σji = 1; the processing
costs must be no greater than the given budget B. We define Ls = mini∈I ri

and Le = Ls + minm∈M

∑
i∈Idπime where dπime is the maximum duration of

order i ∈ I on machine m ∈ M for every possible world w ∈ W . Therefore
dπime = maxw∈W πim. As described in [12], EDP-CP models can be compiled
into standard CP model and they can be solved employing standard solvers. A
CP equivalent model for the EDP-CP model presented in Fig. 1 is given in Fig.
2. In order to solve the EDP-CP model by employing a standard CP approach
we introduced a new set of binary variables, ewi, where i ∈ I, and w ∈ W, where
W is the set of possible worlds defined in Section 2. We recall that πim↓w is
the processing time of job i on machine m in world w. The Dependency meta
constraint is translated into the first two hard constraints in the CP equivalent
model. These two constraints state that when ewi is equal to 1 this means that in
world w job i successfully terminates before the next scheduled job and before its
deadline. The remaining hard constraints in the EDP-CP model are retained in
the CP equivalent model. The objective function is therefore the weighted sum∑

i∈I

∑
w∈W ewipw, where pw is the probability associated to world w ∈ W .

3 Sample Average Approximation

In this section we aim to extend the discussion in [12] on the possible techniques
that may be applied to reduce the number of possible worlds considered as an
input of an EDP-CP model. We will also discuss how the quality of a given
solution can be analyzed with respect to this reduction by using confidence
interval analysis and how it is possible to efficiently obtain good solutions by
solving problems over a fairly small number of worlds. In order to do so we
will employ the approach proposed in [7] by Kleywegt et al. known as Sample
Average Approximation (SAA). This approach is extremely powerful due to its
generality, efficiency and to the quality of the solutions it provides.

3.1 Latin Hypercube Sampling

First we recall the scenario reduction technique described in [12], Latin Hy-
percube Sampling (LHS) [8]. Latin Hypercube Sampling is a stratified random
sampling technique in which a sample of size N from multiple random vari-
ables is drawn such that for each individual variable the sample is (marginally)
maximally stratified. A sample is maximally stratified when the number of strata
equals the sample size N and when the probability of falling in each of the strata
equals N−1. The number of categories per variable equals the sample size (6),
each row or column contains one element, and the width of rows and columns is
1/6. To draw a Latin hypercube sample of size N for K independent variables,
the ith sample element for variable j is obtained as zij = F−1

j ((pij − ξij)/N),
where Fj is the cumulative distribution function of variable j, where, for each
j = 1, . . . ,K, pij (i = 1, . . . , N) is a random permutation of 1, . . . , N ; ξij is
U [0, 1], a uniformly distributed random number between 0 and 1; and the K
permutations of the NK uniform variates ξij are mutually independent. This
sampling procedure has been originally chosen for its effectiveness. For instance
Stein [11] showed that LHS yields an asymptotic variance that is smaller than
those produced by other techniques like Simple Random Sampling, typically
used in Monte Carlo analysis. Pebesma and Heuvelink [10] point out that for
the input to the Monte Carlo analysis, the usual way to create multiple realiza-
tions of a spatial random field is to draw a simple random sample, subsequent
realizations are typically drawn independently. Taking a larger sample of real-
izations usually allows more accurate estimation of the probability distribution
function being analyzed. If the run time of each Monte Carlo run is short, tak-
ing a larger sample suffices to make the sampling error negligibly small. On the
other hand, as it is the case for our approach, when each model run is relatively
expensive1, the sample size has to be kept small for practical reasons. In this
case, more accurate assessment of the output probability distribution function
can be obtained when more efficient sampling methods, such as stratified ran-
dom sampling or its multivariate version, LHS, are used. Furthermore a method

1 Note that in each “run” we need to solve a model involving N worlds, where N is
sample size

for drawing Latin hypercube samples from dependent variables was presented
by Stein [11], therefore this technique can be effectively applied even when the
random variables considered are not mutually independent.

3.2 Stochastic Discrete Optimization with LHS

We consider optimization problems of the form

min
x∈S

{g(x) := EP G(x,W)} (1)

where W is a random vector having probability distribution P , S is a finite
set, G(x, w) is a real valued function of two (vectory) variables x and w, and
EP G(x,W) =

∫
G(x,w)P (dw) is the corresponding expected value. g(x), the

expected value function, is assumed to be well defined.
Equipped with the sampling procedure described in the former section we

will now describe how it is possible to efficiently obtain good solutions for this
class of problems by using EDP-CP and by employing a technique similar to
the one discussed by Kleywegt et al. in [7]. The technique is simple. A Latin
hypercube sample of W is generated for the problem considered. The EDP-
CP model is solved for the given sample and the procedure is repeated several
times until a stopping criterion is satisfied. An asymptotically exact method
consists in incrementally increasing the sample size N until a stopping criterion is
satisfied, while an approximate approach consists in solving the EDP-CP model
for several samples of a given size. Obviously these two alternative methods can
be integrated as shown in [7].

Let Ŵ = [W 1, . . . ,WN] be an independently and identically distributed
(i.i.d.) random sample of N realizations of the random vector W . The sample
average function is

ĝ(x) :=
1
N

N∑

j=1

G(x, W j) (2)

and the associated problem
min
x∈S

ĝ(x). (3)

We refer to 1 and 3 as the “true” problem and SAA problems, respectively. Let
v∗ and v̂N denote the optimal values

v∗ := min
x∈S

g(x) and v̂N := min
x∈S

ĝ(x), (4)

of the respective problems. We also consider sets of ε-optimal solutions. That
is, for ε > 0, we say that x is an ε-optimal solution of 1 if x ∈ S and g(x) ≤
v∗ + ε. The sets of all ε-optimal solutions of 1 and 3 are denoted by Sε and Ŝε

N ,
respectively. For ε = 0 the two sets are identical.

The following propositions in [7] state that with probability approaching 1
exponentially fast in the increase of the sample size, an optimal solution of the
sampled problem provides an optimal solution of the “true” problem.

Proposition 1 (Kleywegt et al. [7]). The following two properties hold: (i)
v̂N → v∗ with probability one (w.p.1) as N → ∞, and (ii) for any ε ≥ 0 the
event {Ŝε

N ⊂ Sε} happens w.p.1 for N large enough.

Proposition 2 (Kleywegt et al. [7]). The probability of event {Ŝε
N ⊂ Sε}

approaches 1 exponentially fast as N →∞ under a mild assumption.

As the authors remark in [7] this suggests that an effective sampling procedure,
combined with an efficient method for solving the deterministic SAA problem,
can effectively solve the type of problems considered. Nevertheless if the compu-
tational complexity of solving the SAA problem increases faster than linearly in
the sample size N , it may be more efficient to choose a small sample size N and
solve several SAA problems with i.i.d. samples. One can view such a procedure
as Bernoulli trials with probability of success p = p(N). Here “success” means
that a calculated optimal solution x̂N of the SAA problem is an optimal solution
for the true problem. Obviously, from the propositions above this probability p
tends to 1 and N → ∞, and, moreover, it tends to 1 exponentially fast under
a mild assumption. However, for a finite N , p can be small or even zero. The
probability of producing an optimal solution of the true problem at least once
in M trials is 1 − (1 − p)M , and this probability tends to 1 as M → ∞, pro-
vided p is positive. Unfortunately the authors also point out that choosing a
minimum size N that guarantees p > 0 is a hard problem specific task. In [7]
the authors also describe some possible “optimality gap” estimators that can be
used to define a stopping criterion for the optimization process both in the exact
and in the approximate case. They emphasize that finding good optimality gap
estimators is again a hard problem dependent task. Moreover the stopping crite-
ria based on “optimality gap” estimators proposed by the authors are weak, as
they remark in their conclusions, therefore even if their SAA method is clearly
effective2, typically the sample size needs to be substantially increased to decide
when the best solution found is good enough. For this reason the search cannot
be promptly stopped as soon as a good solution is reached. Here we suggest a
different approach to decide when a solution is good enough. Our approach relies
on confidence interval analysis, which we now introduce.

3.3 Confidence Interval Analysis

Originally introduced by Neyman [9], confidence interval analysis is a well es-
tablished technique in statistics [13]. In the years several techniques for building
confidence intervals for a given sample set have been proposed. Here we will
focus on the exact methods to build these intervals for normally distributed ran-
dom variables. Obviously, under the assumptions stated by the Central Limit
Theorem (CLT) [13], this approach can also be adopted when the the distribu-
tion of the random variables is unknown. The basic idea underlying confidence

2 In their experiments it quickly converges to a nearly optimal solution by analyzing
only a few samples

interval analysis is as follows. Every confidence interval is build on the top of a
condition that gives the satisfaction probability of some inequalities concerning a
given estimated value ã. In the general case the distribution law of ã depends on
the parameters of the probability distribution function for the unknown random
variable X being analyzed, therefore analyzing this distribution law is difficult.
Nevertheless in some cases it is possible to switch from the random variable ã to
another function of the observed realizations X1, . . . , XN whose distribution law
depends only on the number of realizations observed N and on the distribution
law of X (i.e. normal distribution, poisson distribution etc.), but not on the
unknown parameters of such a distribution. The theory of confidence intervals
is of great importance in statistics, for instance it has been proved that if X is a
random variable normally distributed, then the random variable T =

√
N m̃−X√

D̃
,

where m̃ =
∑N

i=1 Xi

N and D̃ =
∑N

i=1(Xi−m̃)2

N−1 is distributed according to Student’s
distribution with N − 1 degrees of freedom. We shall now see how this distribu-
tion is applied to build the confidence intervals for m̃, that is our sample mean.
By computing the confidence interval for the sample mean m̃ we are looking for
a value εα such that Pr{|m̃ − X| < εα} = α. Let tα the value of the Inverse
Student’s T distribution for a confidence probability α and N − 1 degrees of

freedom. By setting εα = tα

√
D̃
N , we find half of the length of the confidence

interval Iα and therefore the interval Iα =
(

m̃− tα

√
D̃
N , m̃ + tα

√
D̃
N

)
. A similar

approach can be used to build these intervals also for D̃, that is the computed
sample variance. In this case confidence interval Iα for the sample variance D̃

can be computed as Iα =
(

D̃(N−1)
χ2

1
, D̃(N−1)

χ2
2

)
, where χ2

1 is the value of the in-

verse χ2 distribution [13] for N − 1 degrees of freedom and a probability 1−α
2 ,

χ2
2 is the value of the inverse χ2 distribution for N − 1 degrees of freedom and

a probability 1− 1−α
2 .

3.4 Stopping criteria for SAA based on confidence intervals

It is possible to apply the theory presented in Section3.3 to define effective
stopping criteria. Confidence interval analysis can be extremely useful for making
dynamic decisions related to the search process for a solution that is optimal
under certain criteria. As a consequence of the considerations on Bernoulli trials
in Section 3.2 and from the CLT, intuitively it should be possible, in principle,
to solve an SAA problem over a very small sample set for several times and
to eventually generate an optimal solution. As the authors remark in [7] this is
what happens in practice when we look at the experiments. Nevertheless in their
conclusions the author remarked that their stopping criterion performs poorly
and therefore their approach keeps looking for a solution even when the chances
of improving the current one are very low. In what follows we will define an
effective approach to decide when to stop the search. Our approach is able to
converge to “sufficiently” optimal solutions by using fairly small sample sizes.

(i) solution quality criterion A first stopping criterion that has to be
defined is the following. Since solving a SAA problem with large N = |Ŵ | is
computationally expensive, we usually consider SAA problems where, in the
sample average function ĝ(x), the sample set size N is small. It directly follows
that the objective function value v̂N obtained may not be representative enough
for the actual quality of the solution obtained. If the expected value function
g(x) is discrete, defined over a finite set of worlds W, and if we have a complete
knowledge over these worlds, then g(x) for the optimal solution x of the SAA
problem can be easily computed. Nevertheless in general g(x) is a continuous
function. In this case in order to obtain a more representative value v̂N ′ that
estimates g(x), we can efficiently compute the value of the sample average func-
tion ĝ(x) for x over a larger sample set Ŵ ′, where N ′ = |Ŵ ′| > N . The size of
Ŵ ′ can be dynamically determined using the technique described in Section 3.3
when a confidence probability α and a threshold size for the confidence interval
Iα over v̂N ′ are fixed.

(ii) SAA problem replication number criterion We now know how to
dynamically compute a good estimate value ã for g(x) when the optimal solution
x for a SAA problem over a given sample set is known. As stated in Section 3.2
we typically aim to repeatedly solve several SAA problems for a given sample
size N and look for the solution x̂ with the best estimate value ã. Therefore
in general we will consider M sample sets Ŵ1, . . . , ŴM , where |Ŵi| = N for
i = 1, . . . , M and we will solve a SAA problem over each sample set Ŵi. A key
problem now is to decide the number M of problems that need to be solved in
order to have a good chance to produce an ε-optimal solution. Let a1, . . . , aM

be the estimate values computed for g(x1), . . . , g(xM), where xi is the optimal
solution of the SAA problem over Ŵi. The stopping criterion is simple. We build
confidence intervals (for a given confidence probability α) as explained in Section
3.3 for the sample mean and the sample variance of the sample set a1, . . . , aM .
Let dm̃e be the upper limit of the confidence interval for the sample mean and
let dσ̃2e be the upper limit of the confidence interval for the sample variance.
By (roughly) applying the 3σ rule3 [13], if the best solution value found so far
is greater than dm̃e+ 3 ∗

√
dσ̃2e then with about α% confidence our search over

the current sample size cannot lead to a better solution.
(iii) sample set size criterion Finally, we need a criterion to decide when

the sample size has to be increased or the search for an ε-optimal solution has to
be terminated. This criterion is defined as follows. We assume an increase step s
for the number of samples considered and a minimum improvement threshold τ .
Let UN be the value dm̃e+ 3 ∗

√
dσ̃2e computed for a sample size N and UN−s

the one for sample size N − s. If UN −UN−s > τ we increase the sample set size
to N + s and we solve a new set of SAA problems for this new sample set size.
Otherwise we stop searching and we return the solution x with the best-so-far

3 The 3σ rule states that for a normally distributed random variable with mean m
and standard deviation σ the event {|X −m| < 3σ} can be assumed almost certain,
in fact Pr{|X −m| < 3σ} = 0.99730

Algorithm 1: SAA method with confidence based stopping criteria
input : N : the initial sample size; B: minimum extended sample size; α: confidence

probability; τ : improvement threshold; s: sample set increase step
output: x: best solution so far

begin1
x ← NULL; v ← −∞; UN−s ← −∞; UN ← 0;2
while UN − UN−s > τ do3

UN−s = UN ;4
UN ← runSampleSize(N, α);5
N ← N + s;6

end7

ã. The justification for this criterion directly comes from the fact that, if the
inequality UN − UN−s > τ does not hold, this means that, by using a sample
size N , with α% confidence we can not sufficiently — with respect to the given
threshold τ — improve the solution found by using a smaller sample size N − s.

3.5 SAA method with confidence based stopping criteria

We now have all the ingredients to define our solution method. In Algorithm
1 the high level pseudo-code for the proposed procedure is presented. The ap-
proach proceeds as follows. We first select an initial sample size N ; a confidence
probability α that will be used in the computation of confidence intervals; a so-
lution improvement threshold τ ; and a step s to increase the sample set. Notice
that by means of parameters α and τ , in practice, what we ask is that with a
probability α our algorithm must return a solution with a value greater than
v∗ − τ , where v∗ is the real optimum of the problem. Therefore τ is problem
dependent and has to be properly chosen. As explained in Section 3.2 we gen-
erate a sample set of size N (replicateSampleSize(N, α), line 2), we solve
the associated SAA problem (replicateSampleSize(N,α), line 4), then we as-
sess the quality of the solution found, x, with respect to a larger sample set
whose size N ′ (possibly greater or equal to a minimum size B indicated by
the user) is decided dynamically — criterion (i) — by means of confidence in-
terval analysis (replicateSampleSize(N,α), cycle starting at line 7). If the
solution x found has the best estimated value ã for g(x) we store x and ã
(replicateSampleSize(N,α), line 15). After N ′ replications we obtain a suf-
ficiently good estimate ã (with respect to the chosen confidence probability) of
g(x). We replicate this process M times (runSampleSize(N, α), cycle starting
at line 4). Again the number of replications M is dynamically computed us-
ing confidence interval analysis (runSampleSize(N, α), line 11, 12 and 13) as
explained in criterion (ii). After M replication we obtain an estimate for the av-
erage solution value Ã associated to a given sample set size; this value has been
computed according to the required confidence level α. This process is repeated
(Algorithm 1, line 3) until the last increase in the sample set size does not bring
a sufficient improvement — criterion (iii) — in the average solution value Ã.

Function replicateSampleSize(N, α)
input : N, α
output: ã

begin1

generate N i.i.d. samples Ŵ = [W 1, . . . , W N];2

let x be the optimal solution of the SAA problem over Ŵ ;3

N ′ ← B;4
ã ← 0;5
ã ← 0;6
while true do7

generate N ′ i.i.d. samples Ŵ = [W 1, . . . , W N′];8
for each sample Wj do9

ã ← ã + G(x, W j);10

ã ← ã + G(x, W j)2;11

i ← confidenceInterval(ã, ã, N ′), that is 2tα

√
ã/N ′ − (ã/N ′)2/(N ′ − 1);12

if i ≤ ã(1− α)/N ′ then13
ã ← ã/N ′;14
if ã > v then15

v ← ã;16
x ← x;17

return;18

else19
N ′ ← N ′ + 1;20

end21

4 Experiments

We will now present some experi-

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

0,1 1 10 100 1000

Time (secs)

%
 O

p
ti

m
u

m

Fig. 4. Comparison among 10 runs for
the 7× 3 “hard” instance

ments that suggest that our approach
can effectively converge to optimal so-
lutions by analyzing sample sets of
limited size and by employing only
a few replications. In this section we
will use a test bed originally presented
by Jain and Grossmann for the schedul-
ing problem described in Section 2.1.
In [6] the authors consider an opti-
mization version of sequencing with
release date and deadlines and pro-

vide ten problems, five different sizes with two data sets each (the problems are
available in the Online Supplement of the article http://joc.informs.org). As re-
marked in Section 2.1 we will not optimize processing cost and we will instead
optimize the reliability of a plan under a given budget B. Since the input data
in [6] are for a deterministic problem we will assume here (without loss of gen-
erality) that the job durations provided represent expected values for normally
distributed random job lengths, the respective standard deviations can be com-
puted as π̃cv, where π̃ is an expected job length and cv is a given coefficient of
variation. In the example here provided we assume cv = 0.15. In order to assess

Function runSampleSize(N,α)
input : N, α
output: U

begin1
S ← {};2
M ← 0;3
while true do4

ã ← replicateSampleSize(N, α);5
S ← S ∪ {ã};6
M ← M + 1;7
if M = 1 then8

continue;9

else10
[bm̃c, dm̃e] ← sampleMeanConfidenceInterval(S, M)a;11

[bσ̃2c, dσ̃2e] ← sampleV arianceConfidenceInterval(S, M);12

if dm̃e+ 3 ∗
√
dσ̃2e ≤ v then13

U ← dm̃e+ 3 ∗
√
dσ̃2e;14

return;15

end16

a The confidence intervals for the mean and the variance over the set S of samples can
be computed as shown in Section 3.3

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

1 10 100 1000

Replications

%
 O

p
ti

m
u

m

7 jobs, 3 machines, hard 5 jobs, 2 machines, hard

7 jobs, 3 machines, easy 5 jobs, 2 machines, easy

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

0,1 1 10 100 1000

Time (secs)

%
 O

p
ti

m
u

m

7 jobs, 3 machines, hard 5 jobs, 2 machines, hard

7 jobs, 2 machines, easy 5 jobs, 2 machines, easy

Fig. 3. Solution improvement for the four instances considered

the effectiveness of our approach we consider the following instances based on
the set from [6]: two instances having 5 jobs to be scheduled on 2 machines
(5× 2) and two instances having 7 jobs to be scheduled on 3 machines (7× 3).
In each pair of instances we consider a “hard” instance and an “easy” one. In
the “hard” instance having 7 jobs on 3 machine the release dates for the or-
ders are [2, 3, 4, 5, 10, 1, 2]. The due dates are [16, 13, 21, 28, 24, 28, 23]. The costs
for processing orders on machine M1 are [10, 8, 12, 10, 8, 12, 12], on machine M2

they are [6, 5, 7, 6, 5, 7, 7], and on machine M3 they are [8, 6, 10, 8, 7, 10, 10]. The
given budget B is 60. The expected processing time of orders on machine M1 are
[10, 6, 11, 6, 10, 7, 10], on machine M2 they are [14, 8, 16, 12, 16, 12, 8], and on ma-
chine M3 they are [12, 7, 13, 8, 12, 10, 10]. The given budget B is 60. In the “easy”
instance having 7 jobs on 3 machine the release dates, the budget, the due dates
and the costs for processing orders on machines remain the same, while the ex-

pected processing time of orders on machine M1 are now [5, 3, 2, 3, 2, 1, 1], on ma-
chine M2 they are [7, 4, 4, 6, 4, 3, 2], and on machine M3 they are [6, 3, 3, 4, 3, 2, 1].
In the “hard’ instance and in the “easy ”instances having 5 jobs on 2 machine
we simply employ data from the former instances for the first 5 jobs and for the
first 2 machines. The given budget is now reduced to 40. For each instance we
generated 100 Latin hypercube samples according to the job length distributions
(normal distribution with cv = 0.15) and to the expected job lengths provided.
We assume that these samples constitute our universe of possible events. Since
this universe has a finite number of scenarios we can obviously solve an instance
over these 100 scenarios and obtain an optimal solution for the problem. In order
to solve the proposed scheduling problem, for efficiency reasons instead of using
the model produced by the EDP-CP compilation presented in [12] as it is, we
reformulated the first two nonlinear constraints in a straightforward manner into
linear ones. Since in the resulting model all the constraints are linear, we solved
it using CPLEX 9.0 [4] using OPL Studio 3.7 [5] on an Intel(R) Centrino(TM)
CPU 1.50GHz with 2Gb RAM. We maintained the default search settings. The
hard 7× 3 instance could not be solved to optimality in a 12 hours run and the
best solution found in this time span had a value of 5.88. The hard 5×2 instance
was solved in 11247.79 seconds and the optimal solution found had a value of
3.64. The easy 7×3 instance was solved in 1.16 seconds and the optimal solution
found had a value of 7. The easy 5× 2 instance was solved in 0.76 seconds and
the optimal solution found had a value of 5. We will now assess the quality of our
approach against these instances. As search parameters we set α = 0.95, τ = 0.1
(this means we want to be 95% confident that the solution found with the last
sample size before the search stops can not be improved by a factor higher than
0.1 by taking a larger sample set), s = 1. The initial sample size is 2. In Fig. 3
we show two graphs. In the graphs on the left for each instance considered, on
the X-axis we show the number of replications performed and on the Y -axis we
report the % over the optimal solution value (computed by the complete MIP
model) achieved. In the graph on the right we consider instead the time on the
X-axis and again the % achieved over the optimal solution value on the Y -axis.
In all the cases the iterative approach solved replications of instances compris-
ing at most 4 samples, in fact the chance of finding better solutions with higher
sample sizes was dynamically ruled out by our criteria. The last data point for
each instance represents respectively the last run performed or the end time of
the search. In Fig. 4 we consider the “hard” 7× 3 instance and we solved it 10
times using our approach. Again the last dot for each instance represents the
end time of the search. Notice that our approach is robust in the sense that
both the quality of the solution and the required time to converge do not vary
much from one run to another. We also performed a larger set of 100 runs for
this instance and, according to the α and τ parameters that have been chosen,
respectively 0.95 and 0.1, in 98% of the runs our method returned a solution
with a value greater than 5.88 − τ = 5.78. Finally we will shortly present an
interesting practical application for our solution method. We refer to the “easy”
7× 3 instance presented in the former section. This instance, for the determin-

istic case, has been solved in [6]. In the deterministic case the problem consists
in finding a feasible schedule that minimizes the processing cost. The optimal
solution found has a processing cost of 44. We now set the budget B in our
model to 44 and we solve the problem when the job lengths are assumed to be
normally distributed with a coefficient of variation cv = 0.15. The solution found
with our approach has a reliability of 5.81. This means that, when uncertainty
comes into play, if we want to preserve the optimal cost that we pay when jobs
lengths are deterministic, then we can only schedule at most 5.81 jobs over 7.
5 Conclusions

We presented a novel stopping criterion for the SAA method based on confidence
interval analysis. Although confidence interval analysis is a tool often used in
conjunction with Monte Carlo simulation, to the best of our knowledge, this
is the first time that this method is used to determine the maximum sample
size that has to be considered in order to be confident, with probability α, that
searching over a larger sample will not provide a better solution. Our preliminary
results suggest that this can be really effective. In the future we aim to extend
our tests over a wider class of problems.
References

1. H. Fargier, R. Martin-Clouaire J. Lang, and T. Schiex. A constraint satisfaction
framework for decision under uncertainty. In Proc. of the 11th Int. Conf. on Un-
certainty in Artificial Intelligence, Montreal, Canada, 1995.

2. M. R. Garey and D. S. Johnson. Computer and Intractability. A guide to the theory
of NP-Completeness. Bell Laboratories, Murray Hill, New Jersey, 1979.

3. J. N. Hooker, G. Ottosson, E. S. Thorsteinsson, and H. J. Kim. On integrating
constraint propagation and linear programming for combinatorial optimization. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-
99), pages 136–141. AAAI, The AAAI Press/MIT Press, Cambridge, Ma., 1999.

4. Inc. ILOG. CPLEX 9.0 Users Manual. ILOG, Inc., Incline Village, NV, 2007.
5. Inc. ILOG. OPL Studio 3.7 Users Manual. ILOG, Inc., Incline Village, NV, 2007.
6. V. Jain and I. E. Grossmann. Algorithms for hybrid milp/cp models for a class of

optimization problems. INFORMS Journal on computing, 13:258–276, 2001.
7. A. J. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The sample average approx-

imation method for stochastic discrete optimization. SIAM Journal of Optimiza-
tion, 12(2):479–502, 2001.

8. M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21:239–245, 1979.

9. J. Neyman. Fiducial argument and the theory of confidence intervals. Biometrika,
32:128–150, 1941.

10. E. J. Pedezma and G. B. Heuvelink. Latin hypercube sampling of gaussian random
fields. Technometrics, 41:303–312, 1999.

11. M. L. Stein. Large sample properties of simulation using latin hypercube sampling.
Technometrics, 29:143–151, 1987.

12. S. A. Tarim, B. Hnich, S. Prestwich, and R. Rossi. Finding reliable solutions: Event-
driven probabilistic constraint programming. Annals of Operations Research, Spe-
cial Issue for CPAIOR 2006, accepted for publication.

13. E. S. Ventsel. Theory of Probability. Moscow, Nauka, (In Russian), 1979.

