396 research outputs found
Survival and Synapse Formation of Transplanted Rat Rods
Isolated rods enzymatically removed from normal
adult rat retina have been transplanted to the
subretinal space of adult rats with a retinal dystrophy
winich has destroyed almost all the photoreceptors.
These transplanted rods survive for months after
transplantation during which time they form synapses
with other retinal cells. Rod spherules with large
amounts of synaptic vesicles and synaptic ribbons are
found forming discreet contacts with pre- and postsynaptic
densities in arrangements closely resembling
those seen in the normal retina
Post-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA
Background: The respiratory pathogen Streptococcus pneumoniae (the pneumococcus) is a genetically diverse bacterium associated with over 101 immunologically distinct polysaccharide capsules (serotypes). Polysaccharide conjugate vaccines (PCVs) have successfully eliminated multiple targeted serotypes, yet the mucoid serotype 3 has persisted despite its inclusion in PCV13. This capsule type is predominantly associated with a single globally disseminated strain, GPSC12 (clonal complex 180).Methods: A genomic epidemiology study combined previous surveillance datasets of serotype 3 pneumococci to analyse the population structure, dynamics, and differences in rates of diversification within GPSC12 during the period of PCV introductions. Transcriptomic analyses, whole genome sequencing, mutagenesis, and electron microscopy were used to characterise the phenotypic impact of loci hypothesised to affect this strain's evolution.Results: GPSC12 was split into clades by a genomic analysis. Clade I, the most common, rarely underwent transformation, but was typically infected with the prophage phi OXC141. Prior to the introduction of PCV13, this Glade's composition shifted towards a phi OXC141-negative subpopulation in a systematically sampled UK collection. In the post-PCV13 era, more rapidly recombining non-Clade I isolates, also phi OXC141-negative, have risen in prevalence. The low in vitro transformation efficiency of a Clade I isolate could not be fully explained by the similar to 100-fold reduction attributable to the serotype 3 capsule. Accordingly, prophage phi OXC141 was found to modify csRNA3, a non-coding RNA that inhibits the induction of transformation. This alteration was identified in -30% of all pneumococci and was particularly common in the unusually clonal serotype 1 GPSC2 strain. RNA-seq and quantitative reverse transcriptase PCR experiments using a genetically tractable pneumococcus demonstrated the altered csRNA3 was more effective at inhibiting production of the competence-stimulating peptide pheromone. This resulted in a reduction in the induction of competence for transformation.Conclusion: This interference with the quorum sensing needed to induce competence reduces the risk of the prophage being deleted by homologous recombination. Hence the selfish prophage-driven alteration of a regulatory RNA limits cell-cell communication and horizontal gene transfer, complicating the interpretation of post-vaccine population dynamics
A model for hysteretic magnetic properties under the application of noncoaxial stress and field
Although descriptions of the effect of stress on spontaneous magnetization within a single domain already exist, there remains no adequate mathematical model for the effects of noncoaxial magnetic field and stress on bulk magnetization in a multidomained specimen. This article addresses the problem and provides a phenomenological theory that applies to the case of bulk isotropic materials. The magnetomechanical hysteresis model of Sablik and Jiles is thus extended to treat magnetic properties in the case of noncoaxial stress and magnetic field in an isotropic, polycrystalline medium. In the modeling, noncollinearity between magnetization and magnetic field is taken into account. The effect of roll‐axis anisotropy is also considered. Both magnetic and magnetostrictive hysteresis are describable by the extended model. Emphasis in this article is on describing properties like coercivity, remanence,hysteresis loss, maximum flux density, and maximum differential permeability as a function of stress for various angular orientations between field and stress axis. The model predictions are compared with experimental results
Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats
Zn is an essential nutrient that is required in humans and animals for many physiological functions, including immune and antioxidant function, growth, and reproduction. The present study evaluated whether Zn deficiency would negatively affect bone-related enzyme, ALP, and other bone-related minerals (Ca, P and Mg) in rats. Thirty Sprague Dawley rats were assigned to one of the three different Zn dietary groups, such as Zn adequate (ZA, 35 mg/kg), pair fed (PF, 35 mg/kg), Zn deficient (ZD, 1 mg/kg) diet, and fed for 10 weeks. Food intake and body weight were measured daily and weekly, respectively. ALP was measured by spectrophotometry and mineral contents were measured by inductively coupled plasma-mass spectrophotometer (ICP-MS). Zn deficient rats showed decreased food intake and body weight compared with Zn adequate rats (p<0.05). Zn deficiency reduced ALP activity in blood (RBC, plasma) and the tissues (liver, kidney and small intestine) (p<0.05). Also, Zn deficiency reduced mineral concentrations in rat tissues (Ca for muscle and liver, and Mg for muscle and liver) (p<0.05). The study results imply the requirement of proper Zn nurture for maintaining bone growth and formation
MS4A1 Dysregulation in Asbestos-Related Lung Squamous Cell Carcinoma Is Due to CD20 Stromal Lymphocyte Expression
Asbestos-related lung cancer accounts for 4–12% of lung cancers worldwide. We have previously identified ADAM28 as a putative oncogene involved in asbestos-related lung adenocarcinoma (ARLC-AC). We hypothesised that similarly gene expression profiling of asbestos-related lung squamous cell carcinomas (ARLC-SCC) may identify candidate oncogenes for ARLC-SCC. We undertook a microarray gene expression study in 56 subjects; 26 ARLC-SCC (defined as lung asbestos body (AB) counts >20AB/gram wet weight (gww) and 30 non-asbestos related lung squamous cell carcinoma (NARLC-SCC; no detectable lung asbestos bodies; 0AB/gww). Microarray and bioinformatics analysis identified six candidate genes differentially expressed between ARLC-SCC and NARLC-SCC based on statistical significance (p<0.001) and fold change (FC) of >2-fold. Two genes MS4A1 and CARD18, were technically replicated by qRT-PCR and showed consistent directional changes. As we also found MS4A1 to be overexpressed in ARLC-ACs, we selected this gene for biological validation in independent test sets (one internal, and one external dataset (2 primary tumor sets)). MS4A1 RNA expression dysregulation was validated in the external dataset but not in our internal dataset, likely due to the small sample size in the test set as immunohistochemical (IHC) staining for MS4A1 (CD20) showed that protein expression localized predominantly to stromal lymphocytes rather than tumor cells in ARLC-SCC. We conclude that differential expression of MS4A1 in this comparative gene expression study of ARLC-SCC versus NARLC-SCC is a stromal signal of uncertain significance, and an example of the rationale for tumor cell enrichment in preparation for gene expression studies where the aim is to identify markers of particular tumor phenotypes. Finally, our study failed to identify any strong gene candidates whose expression serves as a marker of asbestos etiology. Future research is required to determine the role of stromal lymphocyte MS4A1 dysregulation in pulmonary SCCs caused by asbestos
Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells
Trace mineral studies involving metal ion chelators have been conducted in investigating the response of gene and protein expressions of certain cell lines but a few had really focused on how these metal ion chelators could affect the availability of important trace minerals such as Zn, Mn, Fe and Cu. The aim of the present study was to investigate the availability of Zn for the treatment of MC3T3-E1 osteoblast-like cells and the availability of some trace minerals in the cell culture media components after using chelexing resin in the FBS and the addition of N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN, membrane-permeable chelator) and diethylenetriaminepentaacetic acid (DTPA, membrane-impermeable chelator) in the treatment medium. Components for the preparation of cell culture medium and Zn-treated medium have been tested for Zn, Mn, Fe and Cu contents by atomic absorption spectrophotometer or inductively coupled plasma spectrophotometer. Also, the expression of bone-related genes (ALP, Runx2, PTH-R, ProCOL I, OPN and OC) was measured on the cellular Zn depletion such as chelexing or TPEN treatment. Results have shown that using the chelexing resin in FBS would significantly decrease the available Zn (p<0.05) (39.4 ± 1.5 µM vs 0.61 ± 10.15 µM) and Mn (p<0.05) (0.74 ± 0.01 µM vs 0.12 ± 0.04 µM). However, levels of Fe and Cu in FBS were not changed by chelexing FBS. The use of TPEN and DTPA as Zn-chelators did not show significant difference on the final concentration of Zn in the treatment medium (0, 3, 6, 9, 12 µM) except for in the addition of higher 15 µM ZnCl2 which showed a significant increase of Zn level in DTPA-chelated treatment medium. Results have shown that both chelators gave the same pattern for the expression of the five bone-related genes between Zn- and Zn+, and TPEN-treated experiments, compared to chelex-treated experiment, showed lower bone-related gene expression, which may imply that TPEN would be a stronger chelator than chelex resin. This study showed that TPEN would be a stronger chelator compared to DTPA or chelex resin and TPEN and chelex resin exerted cellular zinc depletion to be enough for cell study for Zn depletion
Engineering Crystal Packing in RNA-Protein Complexes II: A Historical Perspective from the Structural Studies of the Spliceosome.
Cryo-electron microscopy has greatly advanced our understanding of how the spliceosome cycles through different conformational states to conduct the chemical reactions that remove introns from pre-mRNA transcripts. The Cryo-EM structures were built upon decades of crystallographic studies of various spliceosomal RNA-protein complexes. In this review we give an overview of the crystal structures solved in the Nagai group, utilizing many of the strategies to design crystal packing as described in the accompanying paper
Cellular and Viral Factors Regulating Merkel Cell Polyomavirus Replication
Merkel cell polyomavirus (MCV), a previously unrecognized component of the human viral skin flora, was discovered as a mutated and clonally-integrated virus inserted into Merkel cell carcinoma (MCC) genomes. We reconstructed a replicating MCV clone (MCV-HF), and then mutated viral sites required for replication or interaction with cellular proteins to examine replication efficiency and viral gene expression. Three days after MCV-HF transfection into 293 cells, although replication is not robust, encapsidated viral DNA and protein can be readily isolated by density gradient centrifugation and typical ∼40 nm diameter polyomavirus virions are identified by electron microscopy. The virus has an orderly gene expression cascade during replication in which large T (LT) and 57kT proteins are first expressed by day 2, followed by expression of small T (sT) and VP1 proteins. VP1 and sT proteins are not detected, and spliced 57kT is markedly diminished, in the replication-defective virus suggesting that early gene splicing and late gene transcription may be dependent on viral DNA replication. MCV replication and encapsidation is increased by overexpression of MCV sT, consistent with sT being a limiting factor during virus replication. Mutation of the MCV LT vacuolar sorting protein hVam6p (Vps39) binding site also enhances MCV replication while exogenous hVam6p overexpression reduces MCV virion production by >90%. Although MCV-HF generates encapsidated wild-type MCV virions, we did not find conditions for persistent transmission to recipient cell lines suggesting that MCV has a highly restricted tropism. These studies identify and highlight the role of polyomavirus DNA replication in viral gene expression and show that viral sT and cellular hVam6p are important factors regulating MCV replication. MCV-HF is a molecular clone that can be readily manipulated to investigate factors affecting MCV replication
The decreased molar ratio of phytate:zinc improved zinc nutriture in South Koreans for the past 30 years (1969-1998)
For the assessment of representative and longitudinal Zn nutriture in South Koreans, Zn, phytate and Ca intakes were determined using four consecutive years of food consumption data taken from Korean National Nutrition Survey Report (KNNSR) every 10 years during 1969-1998. The nutrient intake data are presented for large city and rural areas. Zn intake of South Koreans in both large city and rural areas was low during 1969-1988 having values between 4.5-5.6 mg/d, after then increased to 7.4 (91% Estimated Average Requirements for Koreans, EAR = 8.1 mg/d) and 6.7 mg/d (74% EAR) in 1998 in large city and rural areas, respectively. In 1968, Zn intake was unexpectedly higher in rural areas due to higher grain consumption, but since then until 1988 Zn intake was decreased and increased back in 1998. Food sources for Zn have shifted from plants to a variety of animal products. Phytate intake of South Koreans during 1969-1978 was high mainly due to the consumption of grains and soy products which are major phytate sources, but decreased in 1998. The molar ratios of phytate:Zn and millimmolar ratio of phytate×Ca:Zn were decreased due to the decreased phytate intake in South Koreans, which implies higher zinc bioavailability. The study results suggest that Zn nutriture has improved by increased dietary Zn intakes and the decreased molar ratio of phytate:Zn in South Koreans in both large city and rural areas
- …