122 research outputs found

    Efficacy of Bravecto® Plus spot-on solution for cats (280 mg/ml fluralaner and 14 mg/ml moxidectin) for the prevention of aelurostrongylosis in experimentally infected cats

    Get PDF
    Background: The feline lungworm Aelurostrongylus abstrusus affects the lower respiratory tract in cats worldwide. As infections may lead to chronic respiratory changes or even death, preventive treatment in cats with outdoor access is warranted. Methods: The preventive efficacy of a spot-on solution (Bravecto® Plus spot-on solution for cats, MSD) against cat aelurostrongylosis was evaluated using three different preventive treatment regimes in a negative controlled, randomized and partially blinded laboratory efficacy study with 31 purposed-bred cats. The minimum recommended dose of 2.0 mg moxidectin + 40 mg fluralaner/kg bodyweight was applied once 12 (Group [G]1), 8 (G2) or 4 (G3) weeks before experimental infection with 300 third-stage larvae (L3) of A. abstrusus. Another group served as untreated control (G4). Individual faecal samples were analysed as of day 30 post infection (pi) to monitor larvae excretion. Necropsy was performed at days 47–50 pi. The lungs were examined macroscopically for pathological findings and (pre-)adult worms were counted to assess preventive efficacy. Results: Beginning at day 32–40 pi, all cats of the control group were constantly shedding larvae of A. abstrusus, whereas only one animal of G1 excreted larvae at several consecutive days. In addition, two cats of G1 and G3 and three of G2 were positive on a single occasion. The geometric mean (GM) of the maximum number of excreted larvae was 7574.29 in the control group compared to 1.10 (G1), 1.19 (G2) and 0.53 (G3), resulting in a GM reduction of > 99.9% in all treatment groups. All lungs of the control animals showed severe or very severe alterations at necropsy, while in 94.44% of the treated cats lung pathology was rated as absent or mild. The GM number of (pre-)adult A. abstrusus retrieved from the lungs was 26.57 in the control group, 0.09 in G1 and 0.00 in G2 and G3. Thus, GM worm count reduction was 99.66% in G1 and 100% in G2 and G3. Conclusions: A single application of Bravecto® Plus spot-on solution at a dose of 2.0 mg moxidectin + 40 mg fluralaner/kg bodyweight reliably prevents cat aelurostrongylosis for at least 12 weeks.[Figure not available: see fulltext.

    Discovery of Potent, Selective, and Orally Bioavailable Small-Molecule Modulators of the Mediator Complex-Associated Kinases CDK8 and CDK19.

    Get PDF
    The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility. Compound 109 affords the optimal compromise of in vitro biochemical, pharmacokinetic, and physicochemical properties and is suitable for progression to animal models of cancer

    Complete blockage of the mevalonate pathway results in male gametophyte lethality

    Get PDF
    Plants have two isoprenoid biosynthetic pathways: the cytosolic mevalonate (MVA) pathway and the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Since the discovery of the MEP pathway, possible metabolic cross-talk between these pathways has prompted intense research. Although many studies have shown the existence of such cross-talk using feeding experiments, it remains to be determined if native cross-talk, rather than exogenously applied metabolites, can compensate for complete blockage of the MVA pathway. Previously, Arabidopsis mutants for HMG1 and HMG2 encoding HMG-CoA reductase (HMGR) were isolated. Although it was shown that HMGR1 is a functional HMGR, the enzyme activity of HMGR2 has not been confirmed. It is demonstrated here that HMG2 encodes a functional reductase with similar activity to HMGR1, using enzyme assays and complementation experiments. To estimate the contribution of native cross-talk, an attempt was made to block the MVA pathway by making double mutants lacking both HMG1 and HMG2, but no double homozygotes were detected in the progeny of self-pollinated HMG1/hmg1 hmg2/hmg2 plants. hmg1 hmg2 male gametophytes appeared to be lethal based on crossing experiments, and microscopy indicated that ∼50% of the microspores from the HMG1/hmg1 hmg2/hmg2 plant appeared shrunken and exhibited poorly defined endoplasmic reticulum membranes. In situ hybridization showed that HMG1 transcripts were expressed in both the tapetum and microspores, while HMG2 mRNA appeared only in microspores. It is concluded that native cross-talk from the plastid cannot compensate for complete blockage of the MVA pathway, at least during male gametophyte development, because either HMG1 or HMG2 is required for male gametophyte development

    A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors.

    Get PDF
    Inhibition of the PARP superfamily tankyrase enzymes suppresses Wnt/β-catenin signalling in tumour cells. Here, we describe here a novel, drug-like small molecule inhibitor of tankyrase MSC2504877 that inhibits the growth of APC mutant colorectal tumour cells. Parallel siRNA and drug sensitivity screens showed that the clinical CDK4/6 inhibitor palbociclib, causes enhanced sensitivity to MSC2504877. This tankyrase inhibitor-CDK4/6 inhibitor combinatorial effect is not limited to palbociclib and MSC2504877 and is elicited with other CDK4/6 inhibitors and toolbox tankyrase inhibitors. The addition of MSC2504877 to palbociclib enhances G 1 cell cycle arrest and cellular senescence in tumour cells. MSC2504877 exposure suppresses the upregulation of Cyclin D2 and Cyclin E2 caused by palbociclib and enhances the suppression of phospho-Rb, providing a mechanistic explanation for these effects. The combination of MSC2504877 and palbociclib was also effective in suppressing the cellular hyperproliferative phenotype seen in Apc defective intestinal stem cells in vivo. However, the presence of an oncogenic Kras p.G12D mutation in mice reversed the effects of the MSC2504877/palbociclib combination, suggesting one molecular route that could lead to drug resistance

    Pentanol isomer synthesis in engineered microorganisms

    Get PDF
    Pentanol isomers such as 2-methyl-1-butanol and 3-methyl-1-butanol are a useful class of chemicals with a potential application as biofuels. They are found as natural by-products of microbial fermentations from amino acid substrates. However, the production titer and yield of the natural processes are too low to be considered for practical applications. Through metabolic engineering, microbial strains for the production of these isomers have been developed, as well as that for 1-pentanol and pentenol. Although the current production levels are still too low for immediate industrial applications, the approach holds significant promise for major breakthroughs in production efficiency

    Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis

    Get PDF
    In comparison to other bacteria Bacillus subtilis emits the volatile compound isoprene in high concentrations. Isoprene is the smallest representative of the natural product group of terpenoids. A search in the genome of B. subtilis resulted in a set of genes with yet unknown function, but putatively involved in the methylerythritol phosphate (MEP) pathway to isoprene. Further identification of these genes would give the possibility to engineer B. subtilis as a host cell for the production of terpenoids like the valuable plant-produced drugs artemisinin and paclitaxel. Conditional knock-out strains of putative genes were analyzed for the amount of isoprene emitted. Differences in isoprene emission were used to identify the function of the enzymes and of the corresponding selected genes in the MEP pathway. We give proof on a biochemical level that several of these selected genes from this species are involved in isoprene biosynthesis. This opens the possibilities to investigate the physiological function of isoprene emission and to increase the endogenous flux to the terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate, for the heterologous production of more complex terpenoids in B. subtilis
    corecore