175 research outputs found

    Fetching marked items from an unsorted database in NMR ensemble computing

    Full text link
    Searching a marked item or several marked items from an unsorted database is a very difficult mathematical problem. Using classical computer, it requires O(N=2n)O(N=2^n) steps to find the target. Using a quantum computer, Grover's algorithm uses O(N=2n)O(\sqrt{N=2^n}) steps. In NMR ensemble computing, Brushweiler's algorithm uses logN\log N steps. In this Letter, we propose an algorithm that fetches marked items in an unsorted database directly. It requires only a single query. It can find a single marked item or multiple number of items.Comment: 4 pages and 1 figur

    Non-Ergodic Nuclear Depolarization in Nano-Cavities

    Full text link
    Recently, it has been observed that the effective dipolar interactions between nuclear spins of spin-carrying molecules of a gas in a closed nano-cavities are independent of the spacing between all spins. We derive exact time-dependent polarization for all spins in spin-1/2 ensemble with spatially independent effective dipolar interactions. If the initial polarization is on a single (first) spin,P1(0)=1P_1(0)= 1 then the exact spin dynamics of the model is shown to exhibit a periodical short pulses of the polarization of the first spin, the effect being typical of the systems having a large number, NN, of spins. If N1N \gg 1, then within the period 4π/g4\pi/g (2π/g2\pi/g) for odd (even) NN-spin clusters, with gg standing for spin coupling, the polarization of spin 1 switches quickly from unity to the time independent value, 1/3, over the time interval about (gN)1(g\sqrt{N})^{-1}, thus, almost all the time, the spin 1 spends in the time independent condition P1(t)=1/3P_1(t)= 1/3. The period and the width of the pulses determine the volume and the form-factor of the ellipsoidal cavity. The formalism is adopted to the case of time varying nano-fluctuations of the volume of the cavitation nano-bubbles. If the volume V(t)V(t) is varied by the Gaussian-in-time random noise then the envelope of the polarization peaks goes irreversibly to 1/3. The polarization dynamics of the single spin exhibits the Gaussian (or exponential) time dependence when the correlation time of the fluctuations of the nano-volume is larger (or smaller) than the <(δg)2>1/2<(\delta g)^2 >^{-1/2} , where the is the variance of the g(V(t))g(V(t)) coupling. Finally, we report the exact calculations of the NMR line shape for the NN-spin gaseous aggregate.Comment: 26 pages, 3 figure

    A Major Determinant of Cyclophilin Dependence and Cyclosporine Susceptibility of Hepatitis C Virus Identified by a Genetic Approach

    Get PDF
    Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofactors important for viral infection have been discovered at a rapid pace, but the viral targets and the mechanism of action for many of these cofactors remain undefined. One such cofactor is cyclophilin A (CyPA), upon which hepatitis C virus (HCV) replication critically depends. Here we report a new genetic selection scheme that identified a major viral determinant of HCV's dependence on CyPA and susceptibility to cyclosporine A. We selected mutant viruses that were able to infect CyPA-knockdown cells which were refractory to infection by wild-type HCV produced in cell culture. Five independent selections revealed related mutations in a single dipeptide motif (D316 and Y317) located in a proline-rich region of NS5A domain II, which has been implicated in CyPA binding. Engineering the mutations into wild-type HCV fully recapitulated the CyPA-independent and CsA-resistant phenotype and four putative proline substrates of CyPA were mapped to the vicinity of the DY motif. Circular dichroism analysis of wild-type and mutant NS5A peptides indicated that the D316E/Y317N mutations (DEYN) induced a conformational change at a major CyPA-binding site. Furthermore, nuclear magnetic resonance experiments suggested that NS5A with DEYN mutations adopts a more extended, functional conformation in the putative CyPA substrate site in domain II. Finally, the importance of this major CsA-sensitivity determinant was confirmed in additional genotypes (GT) other than GT 2a. This study describes a new genetic approach to identifying viral targets of cellular cofactors and identifies a major regulator of HCV's susceptibility to CsA and its derivatives that are currently in clinical trials

    Thresholds of Toxicological Concern for Cosmetics-Related Substances: New Database, Thresholds, and Enrichment of Chemical Space

    Get PDF
    A new dataset of cosmetics-related chemicals for the Threshold of Toxicological Concern (TTC) approach has been compiled, comprising 552 chemicals with 219, 40, and 293 chemicals in Cramer Classes I, II, and III, respectively. Data were integrated and curated to create a database of No-/Lowest-Observed-Adverse-Effect Level (NOAEL/LOAEL) values, from which the final COSMOS TTC dataset was developed. Criteria for study inclusion and NOAEL decisions were defined, and rigorous quality control was performed for study details and assignment of Cramer classes. From the final COSMOS TTC dataset, human exposure thresholds of 42 and 7.9 μg/kg-bw/day were derived for Cramer Classes I and III, respectively. The size of Cramer Class II was insufficient for derivation of a TTC value. The COSMOS TTC dataset was then federated with the dataset of Munro and colleagues, previously published in 1996, after updating the latter using the quality control processes for this project. This federated dataset expands the chemical space and provides more robust thresholds. The 966 substances in the federated database comprise 245, 49 and 672 chemicals in Cramer Classes I, II and III, respectively. The corresponding TTC values of 46, 6.2 and 2.3 μg/kg-bw/day are broadly similar to those of the original Munro dataset
    corecore