284 research outputs found

    Biomimetic Transparent Eye Protection Inspired by the Carapace of an Ostracod (Crustacea)

    Get PDF
    In this study we mimic the unique, transparent protective carapace (shell) of myodocopid ostracods, through which their compound eyes see, to demonstrate that the carapace ultrastructure also provides functions of strength and protection for a relatively thin structure. The bulk ultrastructure of the transparent window in the carapace of the relatively large, pelagic cypridinid (Myodocopida) Macrocypridina castanea was mimicked using the thin film deposition of dielectric materials to create a transparent, 15 bi-layer material. This biomimetic material was subjected to the natural forces withstood by the ostracod carapace in situ, including scratching by captured prey and strikes by water-borne particles. The biomimetic material was then tested in terms of its extrinsic (hardness value) and intrinsic (elastic modulus) response to indentation along with its scratch resistance. The performance of the biomimetic material was compared with that of a commonly used, anti-scratch resistant lens and polycarbonate that is typically used in the field of transparent armoury. The biomimetic material showed the best scratch resistant performance, and significantly greater hardness and elastic modulus values. The ability of biomimetic material to revert back to its original form (post loading), along with its scratch resistant qualities, offers potential for biomimetic eye protection coating that could enhance material currently in use

    Increased parental effort fails to buffer the cascading effects of warmer seas on common guillemot demographic rates

    Get PDF
    Research Funding Natural Environment Research Council Award. Grant Number: NE/R016429/1 UK-SCAPE Programme Delivering National Capability Joint Nature Conservation Committee EU ‘The Effect of Large-scale Industrial Fisheries On Non-Target Species’ FP5 Project ‘Interactions between the Marine environment, PREdators and Prey: Implications for Sustainable Sandeel Fisheries’. Grant Numbers: MS21-013, Q5RS-2000-30864 Ministry of Universities-University of ValenciaPeer reviewedPublisher PD

    Establishment of long-term ostracod epidermal culture

    Get PDF
    Primary crustacean cell culture was introduced in the 1960s, but to date limited cell lines have been established. Skogsbergia lerneri is a myodocopid ostracod, which has a body enclosed within a thin, durable, transparent bivalved carapace, through which the eye can see. The epidermal layer lines the inner surface of the carapace and is responsible for carapace synthesis. The purpose of the present study was to develop an in vitro epidermal tissue and cell culture method for S. lerneri. First, an optimal environment for the viability of this epidermal tissue was ascertained, while maintaining its cell proliferative capacity. Next, a microdissection technique to remove the epidermal layer for explant culture was established and finally, a cell dissociation method for epidermal cell culture was determined. Maintenance of sterility, cell viability and proliferation were key throughout these processes. This novel approach for viable S. lerneri epidermal tissue and cell culture augments our understanding of crustacean cell biology and the complex biosynthesis of the ostracod carapace. In addition, these techniques have great potential in the fields of biomaterial manufacture, the military and fisheries, for example, in vitro toxicity testing

    Field estimates of reproductive success in a model insect: behavioural surrogates are poor predictors of fitness

    Get PDF
    Understanding, and therefore measuring, factors that determine fitness is a central problem in evolutionary biology. We studied a natural population of Coenagrion puella (Odonata: Zygoptera) over two entire breeding seasons, with over a thousand individuals uniquely marked and genotyped, and all mating events at the rendezvous site recorded. Using a parentage analysis, fitness of individuals in the first generation was quantified as the numbers of offspring that survived to maturity. Although mating behaviour can be predicted by environmental and demographical variables, the numbers of mature offspring produced (fitness) cannot, and crucially, are poorly correlated with behavioural observations of mating. While fitness of both sexes was positively related to mating behaviour and to female’s ectoparasite burden, these behavioural observations explained little more variance in offspring production than environmental and demographical variables. Thus, we demonstrate that behavioural measures of reproductive success are not necessarily reliable estimates of fitness in natural populations

    Determinants of heart rate in Svalbard reindeer reveal mechanisms of seasonal energy management

    Get PDF
    Funding. This study was supported by Norges Miljø- og Biovitenskape- lige Universitet (PhD Grant to L.M.T.) and Norges Forskningsråd (KLIMAFORSK project no. 267613). Acknowledgements. We thank two anonymous reviewers for constructive, detailed and insightful feedback that helped to strengthen our manuscript. We thank Mads Forchhammer and the logistics department at the University Centre in Svalbard for supporting the field campaigns. We also thank DVM Amanda Høyer Boesen for assistance with surgeries in 2018. Åshild Ø. Pedersen and Stein Tore Pedersen contributed to successful field campaigns. We are grateful for the technical support received from Ásgeir Bjarnason at StarOddi Ltd during logger programming and validations of recordings. Finally, we thank Lucy Hawkes, Andreas Fahlman and Katsufumi Sato for inviting us to contribute to the theme issue ‘Measuring physiology in free-living animals’.Peer reviewedPublisher PD

    Fat storage influences fasting endurance more than body size in an ungulate

    Get PDF
    The fasting endurance hypothesis (FEH) predicts strong selection for large body size in mammals living in environments where food supply is interrupted over prolonged periods of time. The Arctic is a highly seasonal and food restricted environment, but contrary to predictions from the FEH, empirical evidence shows that Arctic mammals are often smaller than their temperate conspecifics. Intraspecific studies integrating physiology and behaviour of different‐sized individuals, may shed light on this paradox. We tested the FEH in free‐living Svalbard reindeer (Rangifer tarandus platyrhynchus). We measured daily energy expenditure (DEE), subcutaneous body temperature (Tsc) and activity levels during the late winter in 14 adult females with body masses ranging from 46.3 to 57.8 kg. Winter energy expenditure (WEE) and fasting endurance (FE) were modelled dynamically by combining these data with body composition measurements of culled individuals at the onset of winter (14 years, n = 140) and variation in activity level throughout winter (10 years, n = 70). Mean DEE was 6.3±0.7 MJ day−1. Lean mass, Tsc and activity had significantly positive effects on DEE. Across all 140 individuals, mean FE was 85±17 days (range 48–137 days). In contrast to the predictions of the FEH, the dominant factor affecting FE was initial fat mass, while body mass and FE were not correlated. Furthermore, lean mass and fat mass were not correlated. FE was on average 80% (45 days) longer in fat than lean individuals of the same size. Reducing activity levels by ~16% or Tsc by ~5% increased FE by 7%, and 4%, respectively. Our results fail to support the FEH. Rather, we demonstrate that (i) the size of fat reserves can be independent of lean mass and body size within a species, (ii) ecological and environmental variation influence FE via their effects on body composition, and (iii) physiological and behavioural adjustments can improve FE within individuals. Altogether, our results suggest that there is a selection in Svalbard reindeer to accumulate body fat, rather than to grow structurally large. he Arctic, activity, biologging, daily energy expenditure, doubly labelled water, intraspecific scaling, subcutaneous body temperature, Svalbard reindeer to accumulate body fat, rather than to grow structurally large. </ol

    Stress responses to repeated captures in a wild ungulate

    Get PDF
    While capture-mark-recapture studies provide essential individual-level data in ecology, repeated captures and handling may impact animal welfare and cause scientific bias. Evaluating the consequences of invasive methodologies should be an integral part of any study involving capture of live animals. We investigated short- and long-term stress responses to repeated captures within a winter on the physiology, behaviour, and reproductive success of female Svalbard reindeer (Rangifer tarandus platyrhynchus). Short-term responses were evaluated using serum concentrations of glucocorticoids and catecholamines during handling, and post-release recovery times in heart rate and activity levels. Repeated captures were associated with an increase in measured catecholamines and glucocorticoids, except cortisone, and delayed recovery in heart rate but not activity. Four months later, in summer, individuals captured repeatedly in winter exhibited a small increase in behavioural response to human disturbance and had a lower probability of being observed with a calf, compared to animals not captured, or captured only once. Our findings imply that single annual capture events have no significant negative consequences for Svalbard reindeer, but repeated captures within a season may impact offspring survival in the same year. Such unanticipated side effects highlight the importance of addressing multiple indicators of animal responses to repeated captures

    Quantifying biomarkers of axonal degeneration in early glaucoma to find the disc at risk

    Get PDF
    Abstract: To evaluate regional axonal-related parameters as a function of disease stage in primary open angle glaucoma (POAG) and visual field (VF) sensitivity. Spectral domain optical coherence tomography was used to acquire 20° scans of POAG (n = 117) or healthy control (n = 52) human optic nerve heads (ONHs). Region specific and mean nerve fibre layer (NFL) thicknesses, border NFL and peripapillary NFL, minimum rim width (MRW)/ area (MRA) and prelamina thickness; and volume were compared across POAG disease stages and with visual field sensitivity. Differences identified between early glaucoma (EG), preperimetric glaucoma (PG) and control (C) ONHs included thinner PG prelamina regions than in controls (p < 0.05). Mean border NFL was thinner in EG (p < 0.001) and PG (p = 0.049) compared to control eyes; and EG mean, and inferior and ST, border NFL was thinner than in PG (p < 0.01). Mean, superior and inferior PG peripapillary NFL were thinner than in controls (p < 0.05), and EG ST peripapillary NFL was thinner than in PG (p = 0.023). MRW differences included: PG SN and inferior less than in controls (p < 0.05); thinner EG mean regional, inferior, nasal, and ST MRW versus PG MRW (p < 0.05). Regional border NFL, peripapillary NFL, MRW, MRA, prelamina thickness (except centre, p = 0.127) and prelamina volume (p < 0.05) were significantly associated with VF mean deviation (MD). Novel axon-derived indices hold potential as biomarkers to detect early glaucoma and identify ONHs at risk

    Contrasting effects of summer and winter warming onbody mass explain population dynamics in a food-limitedArctic herbivore

    Get PDF
    -The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause ‘icing’, restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a ‘barometer’ of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to ‘rain-on-snow’ events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important ‘missing’ mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic. Keywords: climate change, density dependence, extreme events, icing, nutrition, primary production, Rangifer, reindeer, Svalbard, weathe
    corecore