30 research outputs found

    Ethnic density and first episode psychosis in the British Pakistani population: findings from the East Lancashire Early Intervention Service

    Get PDF
    Elevated risk of psychosis for ethnic minority groups has generally been shown to be mitigated by high ethnic density. However, past survey studies examining UK Pakistani populations have shown an absence of protective ethnic density effects, which is not observed in other South Asian groups. To assess the ethnic density effect at a local neighbourhood level, in the UK Pakistani population in East Lancashire. Data was collected by the East Lancashire Early Intervention Service, identifying all cases of first episode psychosis (FEP) within their catchment area between 2012 and 2020. Multilevel Poisson regression analyses were used to compare incidence rates between Pakistani and White majority groups, while controlling for age, gender and area-level deprivation. The ethnic density effect was also examined by comparing incidence rates across high and low density areas. A total of 455 cases of FEP (364 White, 91 Pakistani) were identified. The Pakistani group had a higher incidence of FEP compared to the White majority population. A clear effect of ethnic density on rates of FEP was shown, with those in low density areas having higher incidence rates compared to the White majority, whereas incidence rates in high density areas did not significantly differ. Within the Pakistani group, a dose-response effect was also observed, with risk of FEP increasing incrementally as ethnic density decreased. Higher ethnic density related to lower risk of FEP within the Pakistani population in East Lancashire, highlighting the impact of local social context on psychosis incidence

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    12 pags., 4 figs., 3 tabs.SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.Work at BMRZ is supported by the state of Hesse. Work in Covid19-NMR was supported by the Goethe Corona Funds, by the IWBEFRE-program 20007375 of state of Hesse, the DFG through CRC902: “Molecular Principles of RNA-based regulation.” and through infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611) and by European Union’s Horizon 2020 research and innovation program iNEXT-discovery under grant agreement No 871037. BY-COVID receives funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement number 101046203. “INSPIRED” (MIS 5002550) project, implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011-285950—“SEE-DRUG” project (purchase of UPAT’s 700 MHz NMR equipment). The support of the CERM/CIRMMP center of Instruct-ERIC is gratefully acknowledged. This work has been funded in part by a grant of the Italian Ministry of University and Research (FISR2020IP_02112, ID-COVID) and by Fondazione CR Firenze. A.S. is supported by the Deutsche Forschungsgemeinschaft [SFB902/B16, SCHL2062/2-1] and the Johanna Quandt Young Academy at Goethe [2019/AS01]. M.H. and C.F. thank SFB902 and the Stiftung Polytechnische Gesellschaft for the Scholarship. L.L. work was supported by the French National Research Agency (ANR, NMR-SCoV2-ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), FINOVI and the IR-RMN-THC Fr3050 CNRS. Work at UConn Health was supported by grants from the US National Institutes of Health (R01 GM135592 to B.H., P41 GM111135 and R01 GM123249 to J.C.H.) and the US National Science Foundation (DBI 2030601 to J.C.H.). Latvian Council of Science Grant No. VPP-COVID-2020/1-0014. National Science Foundation EAGER MCB-2031269. This work was supported by the grant Krebsliga KFS-4903-08-2019 and SNF-311030_192646 to J.O. P.G. (ITMP) The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020—Grant Agreement Number 101017536. Open Access funding enabled and organized by Projekt DEALPeer reviewe

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form

    NMR structure of the Vibrio vulnificus ribosomal protein S1 domains D3 and D4 provides insights into molecular recognition of single-stranded RNAs

    No full text
    The ribosomal S1 protein (rS1) is indispensable for translation initiation in Gram-negative bacteria. rS1 is a multidomain protein that acts as an RNA chaperone and ensures that mRNAs can bind the ribosome in a single-stranded conformation, which could be related to fast recognition. Although many ribosome structures were solved in recent years, a high-resolution structure of a two-domain mRNA-binding competent rS1 construct is not yet available. Here, we present the NMR solution structure of the minimal mRNA-binding fragment of Vibrio Vulnificus rS1 containing the domains D3 and D4. Both domains are homologues and adapt an oligonucleotide-binding fold (OB fold) motif. NMR titration experiments reveal that recognition of miscellaneous mRNAs occurs via a continuous interaction surface to one side of these structurally linked domains. Using a novel paramagnetic relaxation enhancement (PRE) approach and exploring different spin-labeling positions within RNA, we were able to track the location and determine the orientation of the RNA in the rS1–D34 bound form. Our investigations show that paramagnetically labeled RNAs, spiked into unmodified RNA, can be used as a molecular ruler to provide structural information on protein-RNA complexes. The dynamic interaction occurs on a defined binding groove spanning both domains with identical β2-β3-β5 interfaces. Evidently, the 3′-ends of the cis-acting RNAs are positioned in the direction of the N-terminus of the rS1 protein, thus towards the 30S binding site and adopt a conformation required for translation initiation

    Switching at the ribosome: riboswitches need rProteins as modulators to regulate translation

    No full text
    Translational riboswitches are cis-acting RNA regulators that modulate the expression of genes during translation initiation. Their mechanism is considered as an RNA-only gene-regulatory system inducing a ligand-dependent shift of the population of functional ON- and OFF-states. The interaction of riboswitches with the translation machinery remained unexplored. For the adenine-sensing riboswitch from Vibrio vulnificus we show that ligand binding alone is not sufficient for switching to a translational ON-state but the interaction of the riboswitch with the 30S ribosome is indispensable. Only the synergy of binding of adenine and of 30S ribosome, in particular protein rS1, induces complete opening of the translation initiation region. Our investigation thus unravels the intricate dynamic network involving RNA regulator, ligand inducer and ribosome protein modulator during translation initiation

    Design and Immunoinformatic Assessment of Candidate Multivariant mRNA Vaccine Construct against Immune Escape Variants of SARS-CoV-2

    No full text
    To effectively counter the evolving threat of SARS-CoV-2 variants, modifications and/or redesigning of mRNA vaccine construct are essentially required. Herein, the design and immunoinformatic assessment of a candidate novel mRNA vaccine construct, DOW-21, are discussed. Briefly, immunologically important domains, N-terminal domain (NTD) and receptor binding domain (RBD), of the spike protein of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) were assessed for sequence, structure, and epitope variations. Based on the assessment, a novel hypothetical NTD (h-NTD) and RBD (h-RBD) were designed to hold all overlapping immune escape variations. The construct sequence was then developed, where h-NTD and h-RBD were intervened by 10-mer gly-ala repeat and the terminals were flanked by regulatory sequences for better intracellular transportation and expression of the coding regions. The protein encoded by the construct holds structural attributes (RMSD NTD: 0.42 Å; RMSD RBD: 0.15 Å) found in the respective domains of SARS-CoV-2 immune escape variants. In addition, it provides coverage to the immunogenic sites of the respective domains found in SARS-CoV-2 variants. Later, the nucleotide sequence of the construct was optimized for GC ratio (56%) and microRNA binding sites to ensure smooth translation. Post-injection antibody titer was also predicted (~12000 AU) to be robust. In summary, the construct proposed in this study could potentially provide broad spectrum coverage in relation to SARS-CoV-2 immune escape variants

    1H, 13C, and 15N backbone chemical shift assignments of the nucleic acid-binding domain of SARS-CoV-2 non-structural protein 3e

    No full text
    The ongoing pandemic caused by the Betacoronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) demonstrates the urgent need of coordinated and rapid research towards inhibitors of the COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome encodes for approximately 30 proteins, among them are the 16 so-called non-structural proteins (Nsps) of the replication/transcription complex. The 217-kDa large Nsp3 spans one polypeptide chain, but comprises multiple independent, yet functionally related domains including the viral papain-like protease. The Nsp3e sub-moiety contains a putative nucleic acid-binding domain (NAB) with so far unknown function and consensus target sequences, which are conceived to be both viral and host RNAs and DNAs, as well as protein-protein interactions. Its NMR-suitable size renders it an attractive object to study, both for understanding the SARS-CoV-2 architecture and drugability besides the classical virus' proteases. We here report the near-complete NMR backbone chemical shifts of the putative Nsp3e NAB that reveal the secondary structure and compactness of the domain, and provide a basis for NMR-based investigations towards understanding and interfering with RNA- and small-molecule-binding by Nsp3e

    A randomised double-blind placebo-controlled 12- week feasibility trial of methotrexate added to treatment as usual in early schizophrenia: study protocol for a randomised controlled trial.

    No full text
    BACKGROUND: Methotrexate is a commonly used anti-inflammatory and immunosuppressive drug. There is growing evidence that inflammatory processes are involved in the pathogenesis of schizophrenia. In our recent randomised double-blind placebo-controlled clinical trial in Pakistan and Brazil, the addition of minocycline (antibiotic and anti-inflammatory drug) for 1 year to treatment as usual reduced negative symptoms and improved some cognitive measures. A meta-analysis of cytokine changes in the peripheral blood has identified IL-2, IFN-gamma, TNF-alpha and soluble IL-2 receptor as trait markers of schizophrenia because their levels were elevated during acute exacerbations and reduced in remission. This suggests immune activation and an inflammatory syndrome in schizophrenia. Based on the evidence of the strong anti-inflammatory properties of methotrexate, we propose that low-dose methotrexate may be an effective therapy in early schizophrenia. METHODS/DESIGN: This is a double-blind placebo-controlled study of methotrexate added to treatment as usual for patients suffering from schizophrenia, schizoaffective disorder, psychosis not otherwise specified or schizophreniform disorder. This will be with 72 patients, 36 in each arm over 3 months. There will be screening, randomisation and follow-up visits. Full clinical assessments will be carried out at baseline, 2, 4, 8 and 12 weeks. Social and cognitive assessments will be carried out at baseline and 12 weeks. Methotrexate will be given at a dose of 10 mgs orally once a week for a 3-month period. DISCUSSION: Evidence suggests inflammatory processes are involved in the pathogenesis of schizophrenia and anti-inflammatory treatments have shown to have some beneficial effects. Methotrexate is a known immunosuppressant and anti-inflammatory drug. The aim of this study is to establish the degree of improvement in positive and negative symptoms, as well as cognitive functioning with the addition of methotrexate to treatment as usual. ClinicalTrials.gov identifier: NCT02074319 (24 February 2014)

    1H, 13C, 15N and 31P chemical shift assignment for stem-loop 4 from the 5'-UTR of SARS-CoV-2

    No full text
    The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5′- and 3′-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5′-untranslated region (5′-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy
    corecore