30 research outputs found

    Cardiac electrophysiological effects of light-activated chloride channels

    Get PDF
    During the last decade, optogenetics has emerged as a paradigm-shifting technique to monitor and steer the behavior of specific cell types in excitable tissues, including the heart. Activation of cation-conducting channelrhodopsins (ChR) leads to membrane depolarization, allowing one to effectively trigger action potentials (AP) in cardiomyocytes. In contrast, the quest for optogenetic tools for hyperpolarization-induced inhibition of AP generation has remained challenging. The green-light activated ChR from Guillardia theta (GtACR1) mediates Cl−-driven photocurrents that have been shown to silence AP generation in different types of neurons. It has been suggested, therefore, to be a suitable tool for inhibition of cardiomyocyte activity. Using single-cell electrophysiological recordings and contraction tracking, as well as intracellular microelectrode recordings and in vivo optical recordings of whole hearts, we find that GtACR1 activation by prolonged illumination arrests cardiac cells in a depolarized state, thus inhibiting re-excitation. In line with this, GtACR1 activation by transient light pulses elicits AP in rabbit isolated cardiomyocytes and in spontaneously beating intact hearts of zebrafish. Our results show that GtACR1 inhibition of AP generation is caused by cell depolarization. While this does not address the need for optogenetic silencing through physiological means (i.e., hyperpolarization), GtACR1 is a potentially attractive tool for activating cardiomyocytes by transient light-induced depolarization

    Modeling the heart

    Get PDF
    Quantitative prediction over multiple space and time scales using computer models of the electrical activity in the mammalian heart, based on membrane and intracellular ion transport and binding dynamics, digital histology, and three-dimensional cardiac anatomy and architecture

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era

    Comparing maximum rate and sustainability of pacing by electrical versus mechanical stimulation in the Langendorff-perfused rabbit heart

    No full text
    Aims: Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS versus electrical stimulation (ES) in the isolated heart under normal physiological conditions. Methods and results: Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.50.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS maintained 1:1 capture was lower than during ES (4.20.2 vs. 5.90.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES was maintained. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. Conclusion: In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS versus ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, warranting further investigation

    Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies

    Get PDF
    Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of ‘wet’ and ‘dry’ investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function

    Rediscovering the third coronary artery.

    No full text
    A second right coronary artery is not at all unusual, as described here from Oxford, England

    Systems biology: an approach.

    No full text
    In just over a decade, Systems Biology has moved from being an idea, or rather a disparate set of ideas, to a mainstream feature of research and funding priorities. Institutes, departments, and centers of various flavors of Systems Biology have sprung up all over the world. An Internet search now produces more than 2 million hits. Of the 2,800 entries in PubMed with "Systems Biology" in either the title or the abstract, only two papers were published before 2000, and >90% were published in the past five years. In this article, we interpret Systems Biology as an approach rather than as a field or a destination of research. We illustrate that this approach is productive for the exploration of systems behavior, or "phenotypes," at all levels of structural and functional complexity, explicitly including the supracellular domain, and suggest how this may be related conceptually to genomes and biochemical networks. We discuss the role of models in Systems Biology and conclude with a consideration of their utility in biomedical research and development

    Interpreting Optical Mapping Recordings in the Ischemic Heart: A Combined Experimental and Computational Investigation

    No full text
    The occlusion of a coronary artery results in myocardial ischemia, significantly disturbing the heart's normal electrical behavior, with potentially lethal consequences, such as sustained arrhythmias. Biologists attempt to shed light on underlying mechanisms with optical voltage mapping, a widely used technique for non-contact visualization of surface electrical activity. However, this method suffers from signal distortion due to fluorescent photon scattering within the biological tissue. The distortion effect may be more pronounced during ischemia, when a gradient of electrophysiological properties exists at the surface of the heart due to diffusion with the surrounding environment. In this paper, a combined experimental and computer simulation investigation into how photon scattering, in the presence of ischemia-induced spatial heterogeneities, distorts optical mapping recordings is performed. Dual excitation wavelength optical mapping experiments are conducted in rabbit hearts. In order to interpret experimental results a computer simulation study is performed using a 3D model of ischemic rabbit cardiac tissue combined with a model of photon diffusion to simulate optical mapping recordings. Results show that the presence of a border zone, in combination with fluorescent photon scattering, distorts the optical signal. Furthermore, changes in the illumination wavelength can alter the relative contribution of the border zone to the emitted signal. The techniques developed in this study may help with interpretation of optical mapping data in electrophysiological investigations of myocardial ischemia. © 2011 Springer-Verlag Berlin Heidelberg
    corecore