33 research outputs found

    Composant photovoltaĂŻque innovant Ă  base d’hĂ©tĂ©rojonction GaP/Si

    Get PDF
    The main objective of this thesis is to study an alternative to conventional amorphous/crystalline silicon heterojunction solar cell using gallium phosphide (GaP) as an emitter layer. This would allow a performance improvement because of its optical and electrical properties. The potential of GaP/Si heterojunction solar cells have been evaluated by studying each of the critical issues inherent to their fabrication process. The chemical preparation of the substrates surface and the mechanisms controling the structure of the Si (100) surface have been studied in order to obtain a single domain silicon surface (with diatomic steps) and slightly roughened by homoepitaxy (UHV-CVD). This work was completed by the study of the impact of surface preparation (chemical preparation and homoepitaxy) of the substrate on the crystalline quality of GaP deposited in two steps by MBE and MEE. The growth of GaP by MEE was subsequently carried out on Si(100) substrates having only undergone a chemical surface preparation. MEE growth sequence parameters were studied and adjusted to optimize GaP nucleation. The structural quality of the thin films was evaluated by AFM and XRD characterizations. Thin films of 20 nm have lower surface roughness equivalent to an homoepitaxy and a volume fraction of MTs below the detection limit. The MEE growth ensures a 2D nucleation. However, TEM and STM characterizations reveal the presence of antiphase boundaries. In parallel, simulations of the structure HET GaP/Si (with AFORS-HET) have been performed to evaluate the potential of the structure. First, diodes and demonstrator cells with GaP/Si junction have been fabricated and optically/electrically characterized. Limitations in performance due to the presence of traps at the interface and silicon volume degradation have been observed. All this work has allowed us to identify the technological issues to overcome in order to fully exploit the GaP/Si heterojunction cells to improve solar cell performance.L’objectif de ce travail de thĂšse a Ă©tĂ© d’étudier une alternative Ă  la cellule photovoltaĂŻque Ă  hĂ©tĂ©rojonction classique de silicium amorphe/cristallin avec un matĂ©riau (GaP) qui permettrait une amĂ©lioration de rendement grĂące Ă  ses propriĂ©tĂ©s optiques et Ă©lectriques. L’étude du potentiel des hĂ©tĂ©rojonctions GaP/Si pour des applications PV nous a amenĂ© Ă  Ă©tudier chacun des aspects critiques inhĂ©rents Ă  leur rĂ©alisation. La prĂ©paration chimique de la surface des substrats et les mĂ©canismes qui contrĂŽlent la structuration de la surface de Si(100) ont Ă©tĂ© Ă©tudiĂ©s afin d’obtenir une surface de silicium mono-domaine (Ă  marches diatomiques) et faiblement rugueuse par homoĂ©pitaxie (dĂ©pĂŽts par UHV-CVD). Cette Ă©tude a Ă©tĂ© complĂ©tĂ©e par l’étude de l’influence de la prĂ©paration de surface (prĂ©paration chimique et homoĂ©pitaxie) du substrat sur la qualitĂ© cristalline du GaP dĂ©posĂ© en deux Ă©tapes par MEE et MBE. La croissance de GaP par MEE a par la suite Ă©tĂ© effectuĂ©e sur des substrats de Si(100) ayant uniquement subi une prĂ©paration chimique de surface. Les paramĂštres de la sĂ©quence de croissances MEE ont Ă©tĂ© Ă©tudiĂ©s et ajustĂ©s afin d’optimiser la phase de nuclĂ©ation du GaP. La qualitĂ© structurale des dĂ©pĂŽts a Ă©tĂ© Ă©valuĂ©e par des caractĂ©risations par AFM et DRX. Les couches minces de faibles Ă©paisseurs (20nm) prĂ©sentent une faible rugositĂ© de surface Ă©quivalente Ă  une homoĂ©pitaxie et une fraction volumique de MTs infĂ©rieure Ă  la limite de dĂ©tection. La croissance MEE permet d’assurer une nuclĂ©ation 2D. Cependant les caractĂ©risations par TEM et STM rĂ©vĂšlent la prĂ©sence de parois d’antiphase. En parallĂšle, la simulation de structures HET GaP/Si (effectuĂ©e grĂące au programme AFORS-HET) et la rĂ©alisation de diodes et de dĂ©monstrateurs cellules GaP/Si ont permis de dĂ©montrer les optimisations apportĂ©es par l’utilisation d’un Ă©metteur de GaP. Ces composants ont Ă©tĂ© Ă©tudiĂ©s par caractĂ©risations optiques et Ă©lectriques. Nous avons constatĂ© une limitation des performances due Ă  la prĂ©sence de piĂšges Ă  l’interface et dans le volume. Ces diffĂ©rentes Ă©tudes ont donc permis d’identifier les verrous technologiques Ă  lever pour exploiter pleinement les cellules Ă  hĂ©tĂ©rojonctions GaP sur silicium afin d’obtenir des hauts rendements photovoltaĂŻques

    Structural and optical properties of (In,Ga)As/GaP quantum dots and (GaAsPN/GaPN) diluted-nitride nanolayers coherently grown onto GaP and Si substrates for photonics and photovoltaics applications

    No full text
    San Francisco, California, United StatesInternational audienceLattice-matched GaP-based nanostructures grown on silicon substrates is a highly rewarded route for coherent integration of photonics and high-efficiency photovoltaic devices onto silicon substrates. We report on the structural and optical properties of selected MBE-grown nanostructures on both GaP substrates and GaP/Si pseudo-substrates. As a first stumbling block, the GaP/Si interface growth has been optimised thanks to a complementary set of thorough structural analyses. Photoluminescence and time-resolved photoluminescence studies of self-assembled (In,Ga)As quantum dots grown on GaP substrate demonstrate a proximity of two different types of optical transitions interpreted as a competition between conduction band states in X and Γ valleys. Structural properties and optical studies of GaAsP(N)/GaP(N) quantum wells coherently grown on GaP substrates and GaP/Si pseudo substrates are reported. Our results are found to be suitable for light emission applications in the datacom segment. Then, possible routes are drawn for larger wavelengths applications, in order to address the chip-to-chip and within-a-chip optical interconnects and the optical telecom segments. Finally, results on GaAsPN/GaP heterostructures and diodes, suitable for PV applications are reporte

    New photovoltaic device based on GaP/Si heterojunctions

    No full text
    L’objectif de ce travail de thĂšse a Ă©tĂ© d’étudier une alternative Ă  la cellule photovoltaĂŻque Ă  hĂ©tĂ©rojonction classique de silicium amorphe/cristallin avec un matĂ©riau (GaP) qui permettrait une amĂ©lioration de rendement grĂące Ă  ses propriĂ©tĂ©s optiques et Ă©lectriques. L’étude du potentiel des hĂ©tĂ©rojonctions GaP/Si pour des applications PV nous a amenĂ© Ă  Ă©tudier chacun des aspects critiques inhĂ©rents Ă  leur rĂ©alisation. La prĂ©paration chimique de la surface des substrats et les mĂ©canismes qui contrĂŽlent la structuration de la surface de Si(100) ont Ă©tĂ© Ă©tudiĂ©s afin d’obtenir une surface de silicium mono-domaine (Ă  marches diatomiques) et faiblement rugueuse par homoĂ©pitaxie (dĂ©pĂŽts par UHV-CVD). Cette Ă©tude a Ă©tĂ© complĂ©tĂ©e par l’étude de l’influence de la prĂ©paration de surface (prĂ©paration chimique et homoĂ©pitaxie) du substrat sur la qualitĂ© cristalline du GaP dĂ©posĂ© en deux Ă©tapes par MEE et MBE. La croissance de GaP par MEE a par la suite Ă©tĂ© effectuĂ©e sur des substrats de Si(100) ayant uniquement subi une prĂ©paration chimique de surface. Les paramĂštres de la sĂ©quence de croissances MEE ont Ă©tĂ© Ă©tudiĂ©s et ajustĂ©s afin d’optimiser la phase de nuclĂ©ation du GaP. La qualitĂ© structurale des dĂ©pĂŽts a Ă©tĂ© Ă©valuĂ©e par des caractĂ©risations par AFM et DRX. Les couches minces de faibles Ă©paisseurs (20nm) prĂ©sentent une faible rugositĂ© de surface Ă©quivalente Ă  une homoĂ©pitaxie et une fraction volumique de MTs infĂ©rieure Ă  la limite de dĂ©tection. La croissance MEE permet d’assurer une nuclĂ©ation 2D. Cependant les caractĂ©risations par TEM et STM rĂ©vĂšlent la prĂ©sence de parois d’antiphase. En parallĂšle, la simulation de structures HET GaP/Si (effectuĂ©e grĂące au programme AFORS-HET) et la rĂ©alisation de diodes et de dĂ©monstrateurs cellules GaP/Si ont permis de dĂ©montrer les optimisations apportĂ©es par l’utilisation d’un Ă©metteur de GaP. Ces composants ont Ă©tĂ© Ă©tudiĂ©s par caractĂ©risations optiques et Ă©lectriques. Nous avons constatĂ© une limitation des performances due Ă  la prĂ©sence de piĂšges Ă  l’interface et dans le volume. Ces diffĂ©rentes Ă©tudes ont donc permis d’identifier les verrous technologiques Ă  lever pour exploiter pleinement les cellules Ă  hĂ©tĂ©rojonctions GaP sur silicium afin d’obtenir des hauts rendements photovoltaĂŻques.The main objective of this thesis is to study an alternative to conventional amorphous/crystalline silicon heterojunction solar cell using gallium phosphide (GaP) as an emitter layer. This would allow a performance improvement because of its optical and electrical properties. The potential of GaP/Si heterojunction solar cells have been evaluated by studying each of the critical issues inherent to their fabrication process. The chemical preparation of the substrates surface and the mechanisms controling the structure of the Si (100) surface have been studied in order to obtain a single domain silicon surface (with diatomic steps) and slightly roughened by homoepitaxy (UHV-CVD). This work was completed by the study of the impact of surface preparation (chemical preparation and homoepitaxy) of the substrate on the crystalline quality of GaP deposited in two steps by MBE and MEE. The growth of GaP by MEE was subsequently carried out on Si(100) substrates having only undergone a chemical surface preparation. MEE growth sequence parameters were studied and adjusted to optimize GaP nucleation. The structural quality of the thin films was evaluated by AFM and XRD characterizations. Thin films of 20 nm have lower surface roughness equivalent to an homoepitaxy and a volume fraction of MTs below the detection limit. The MEE growth ensures a 2D nucleation. However, TEM and STM characterizations reveal the presence of antiphase boundaries. In parallel, simulations of the structure HET GaP/Si (with AFORS-HET) have been performed to evaluate the potential of the structure. First, diodes and demonstrator cells with GaP/Si junction have been fabricated and optically/electrically characterized. Limitations in performance due to the presence of traps at the interface and silicon volume degradation have been observed. All this work has allowed us to identify the technological issues to overcome in order to fully exploit the GaP/Si heterojunction cells to improve solar cell performance

    A novel videography method for generating crack-extension resistance curves in small bone samples

    Get PDF
    Assessment of bone quality is an emerging solution for quantifying the effects of bone pathology or treatment. Perhaps one of the most important parameters characterising bone quality is the toughness behaviour of bone. Particularly, fracture toughness, is becoming a popular means for evaluating bone quality. The method is moving from a single value approach that models bone as a linear-elastic material (using the stress intensity factor, K) towards full crack extension resistance curves (R-curves) using a non-linear model (the strain energy release rate in J-R curves). However, for explanted human bone or small animal bones, there are difficulties in measuring crack-extension resistance curves due to size constraints at the millimetre and sub-millimetre scale. This research proposes a novel "whitening front tracking" method that uses videography to generate full fracture resistance curves in small bone samples where crack propagation cannot typically be observed. Here we present this method on sharp edge notched samples (<1 mm×1 mm×Length) prepared from four human femora tested in three-point bending. Each sample was loaded in a mechanical tester with the crack propagation recorded using videography and analysed using an algorithm to track the whitening (damage) zone. Using the "whitening front tracking" method, full R-curves and J-R curves could be generated for these samples. The curves for this antiplane longitudinal orientation were similar to those found in the literature, being between the published longitudinal and transverse orientations. The proposed technique shows the ability to generate full "crack" extension resistance curves by tracking the whitening front propagation to overcome the small size limitations and the single value approach

    Solar cells with gallium phosphide/silicon heterojunction

    No full text
    International audienceOne of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ∌5×5 cm2 polished samples
    corecore