112 research outputs found

    Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis

    Get PDF
    An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects

    1861-08-17 John H. Quimby requests payment of bill of Captain S.M. Fuller

    Get PDF
    https://digitalmaine.com/cw_me_4th_regiment_corr/1066/thumbnail.jp

    1861-07-18 John H. Quimby requests payment of invoice

    Get PDF
    https://digitalmaine.com/cw_me_4th_regiment_corr/1057/thumbnail.jp

    1861-07-25 John H. Quimby requests payment of bill submitted to Captain Silas Fuller

    Get PDF
    https://digitalmaine.com/cw_me_4th_regiment_corr/1058/thumbnail.jp

    Rapidly decaying supernova 2010X: A candidate ".Ia" explosion

    Get PDF
    We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with τ_d = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M_r = −17 mag and has mean velocities of 10,000 km s^(−1). Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16M_⊙. If powered by Nickel, we show that the Nickel mass must be very small (≈0.02 M_⊙) and that the supernova quickly becomes optically thin to γ -rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a “.Ia” explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events

    Core-collapse Supernovae from the Palomar Transient Factory: Indications for a Different Population in Dwarf Galaxies

    Get PDF
    We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to M_r ≈ –14 mag) and including a substantial fraction (>20%) of dwarf (M_r ≥ –18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while "normal" SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as "normal" SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25^(+0.3)_(–0.15) and 0.23^(+0.11)_(–0.08), respectively; 1σ uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population

    Photometric Evolution of SNe Ib/c 2004ao, 2004gk and 2006gi

    Full text link
    Photometric observations of three core collapse supernovae (SNe 2004ao, 2004gk and 2006gi), covering about 200 days of evolution are presented and analyzed. The photometric behaviour of the three objects is consistent with their membership of the envelope-stripped type Ib/c class. Pseudo-bolometric light curves are constructed. The corresponding measured ee-folding times are found to be faster compared to the 56^{56}Co decay (i.e. 111.3 d), suggesting that a proportion of γ\gamma-rays increasing with time have escaped without thermalization, owing to the low mass nature of the ejecta. SN 2006gi has almost identical post maximum decline phase luminosities as SN 1999ex, and found to be similar to both SNe 1999dn and 1999ex in terms of the quasi-bolometric shape, placing it among the fast decliner Ib objects. SN 2004ao appears to fit within the slow decliner Ib SNe. SNe 2004ao and 2004gk display almost identical luminosities in the [50-100] days time interval, similar to SN 1993J. A preliminary simplified γ\gamma -ray deposition model is described and applied to the computed pseudo-bolometric light curves, allowing one to find a range in the ejecta and 56^{56}Ni masses. The optical and quasi-bolometric light curves, and the BVB-V colour evolution of SN 2004gk are found to show a sudden drop after day 150. Correlating this fact to dust formation is premature and requires further observational evidence.Comment: Accepted for publication in The Astrophysical Journal; (11 two-columns Pages, 11 figures, 6 Tables; Scheduled for publication in April 2011

    Astro2020 Project White Paper: The Cosmic Accelerometer

    Get PDF
    We propose an experiment, the Cosmic Accelerometer, designed to yield velocity precision of 1\leq 1 cm/s with measurement stability over years to decades. The first-phase Cosmic Accelerometer, which is at the scale of the Astro2020 Small programs, will be ideal for precision radial velocity measurements of terrestrial exoplanets in the Habitable Zone of Sun-like stars. At the same time, this experiment will serve as the technical pathfinder and facility core for a second-phase larger facility at the Medium scale, which can provide a significant detection of cosmological redshift drift on a 6-year timescale. This larger facility will naturally provide further detection/study of Earth twin planet systems as part of its external calibration process. This experiment is fundamentally enabled by a novel low-cost telescope technology called PolyOculus, which harnesses recent advances in commercial off the shelf equipment (telescopes, CCD cameras, and control computers) combined with a novel optical architecture to produce telescope collecting areas equivalent to standard telescopes with large mirror diameters. Combining a PolyOculus array with an actively-stabilized high-precision radial velocity spectrograph provides a unique facility with novel calibration features to achieve the performance requirements for the Cosmic Accelerometer

    Evidence for an FU Orionis-like Outburst from a Classical T Tauri Star

    Get PDF
    We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHα 188-G4 and HBC 722). Prior to this outburst, LkHα 188-G4 was classified as a classical T Tauri star (CTTS) on the basis of its optical emission-line spectrum superposed on a K8-type photosphere and its photometric variability. The mid-infrared spectral index of LkHα 188-G4 indicates a Class II-type object. LkHα 188-G4 exhibited a steady rise by ~1 mag over ~11 months starting in August 2009, before a subsequent more abrupt rise of >3 mag on a timescale of ~2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (1) an increase in brightness by ≳ 4 mag, (2) a bright optical/near-infrared reflection nebula appeared, (3) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Hα which is characterized by a P Cygni profile, (4) near-infrared spectra resemble those of late K-M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H_(2)O, and (5) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHα 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified CTTS LkHα 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects

    Construction by Replacement: A new approach to simulation modeling

    Get PDF
    Simulation modeling can be valuable in many areas of management science, but it is often costly, time-consuming, and difficult to do. To reduce these problems, system dynamics researchers have previously developed standard pieces of model structure, called molecules, that can be reused in different models. However, the models assembled from these molecules often lacked feedback loops and generated few, if any, insights. This paper describes a new and more promising approach to using molecules in system dynamics modeling. The heart of the approach is a systematically organized library (or taxonomy) of predefined model components, or molecules, and a set of software tools for replacing one molecule with another. Users start with a simple generic model and progressively replace parts of the model with more specialized molecules from a systematically organized library of predefined components. These substitutions either create a new running model automatically or request further manual changes from the user. The paper describes our exploration using this approach to construct system dynamics models of supply chain processes in a large manufacturing company. The experiment included developing an innovative “tangible user interface” and a comprehensive catalog of system dynamics molecules. The paper concludes with a discussion of the benefits and limitations of this approach
    corecore