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FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Adminis-

tration/Goddard Space Flight Center (NASA/GSFC) and created

for the purpose of investigating the effectiveness of soft-

ware engineering technologies when applied to the develop-

ment of applications software. The SEL was created in 1977

and has three primary organizational members:

NASA/GSFC, Systems Development Branch

The University of Maryland, Computer Sciences Department

Computer Sciences Corporation, Systems Development

Operation

The goals of the SEL are (I) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of reports

that includes this document.

The major contributors to this document are

Kelvin Quimby (Computer Sciences Corporation)

Linda Esker (Computer Sciences Corporation)

John Miller (Computer Sciences Corporation)

Laurie Smith (Computer Sciences Corporation)

Mike Stark (Goddard Space Flight Center)

Frank McGarry (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771
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ABSTRACT _

/

This report presents an analysis of the software engineering

issues related to the use of Ada for the implementation and

system testing phases of four Ada projects developed in the

flight dynamics area. These projects reflect an evolving

understanding of more effective use of Ada features. In

addition, the testing methodology used on these projects has

changed substantially from that used on previous FORTRAN

projects.
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EXECUTIVE, SUMMARY

This report is a continuation of the study Evolution of Ad_

Technoloqv in the Fliaht Dynamics Area--Desiqn Phase Analysis

(Quimby and Esker, 1988). It covers the software engineering

issues related to the use of Ada and supporting development

tools during the implementation and system-testing phases of

the four simulation projects discussed in the previous docu-

ment: the Gamma Ray Observatory (GRO) Dynamics Simulator

(GRODY), the Geostationary Operational Environmental

Satellite-I (GOES-I) Dynamics Simulator (GOADA), the GOES-I

Telemetry Simulator (GOESIM), and the Upper Atmosphere

Research Satellite (UARS) Telemetry Simulator (UARSTELS).

The following points summarize this analysis:

• The object diagram notation introduced by GRODY

was helpful in implementing the design and in communicating

changes in the design among project members during the re-

mainder of system development. However, maintaining the

design document proved to be a labor-intensive activity.

Consideration should be given to automating some portion of

this activity by using a commercially available object-

oriented Computer-Aided Software Engineering (CASE) tool.

• This study raises the question of whether it is

effective to develop a compiled design as a part of the life

cycle. Further study will be required to find out what fac-

tors might be involved in determining the effect on overall

project productivity and software quality of developing a

compiled design.

"• The integrated software development environment

used to develop these simulation systems is highly rated by

all Ada development personnel. However, the effectiveness

5602
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of such an environment might be strongly dependent on the

availability of adequate computer resources to support it.

• Proper use of the generic feature of the Ada lan-

guage has been shown to be a key factor in the development

of software components that can be reused without modifica-

tion on subsequent systems. More important, preliminary

evidence suggests that high levels of reuse in the fiight

dynamics environment can be achieved effectively only

through deliberate engineering of components for use on

entire classes of systems.

• Ada development personnel found that bottom-up,

incremental testing that uses an iterative approach to

develop incremental builds of increasing functionality was

easier and more efficient than the standard top-down ap-

proach to testing used in this environment.

• Component reuse was higher on the three simulation

systems that reused GRODY code than on the typical FORTRAN

simulation system. The lower error rates on the two telem-

etry simulators may be due to their smaller size and lower

complexity. Productivity was higher on the UARSTELS telem-

etry simulator than on the previous Ada projects.
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_ECTION 1 - INTRODUCTION

I.i PURPOSE

This report is one of a series on the development of Ada

technology at Goddard Space Flight Center (GSFC) and the

Systems Sciences Division of the Computer Sciences Corpora-

tion (CSC). A previous report (Quimby and Esker, 1988) ana-

lyzed the technical issues related to the use Of Ada during

the design phases of five Ada projects that have been devel-

oped in the flight dynamics environment over the last several

years. This report is concerned primarily with the implemen-

tation and system-testing issues related to the use of Ada

on the four simulation projects discussed in the previous

report. In addition, material on design issues not covered

in the previous document is covered here, especially design

issues that have heavily affected implementation and testing.

Implementation is defined here as including coding, unit-

testing, and integration-testing activities. System testing

is defined as the formal validation of the completely inte-

grated system according to a system-test plan developed

during the implementation phase (Wood, 1986).

1.2 BACKGROUND

The general background information related to this study is

provided in Section 1.2 of the D@$ian Phase Analysis report

(Quimby and Esker, 1988). Each Ada project described in

that section was Categorized as a first-, second-, or

third-generation Ada project on the basis of the technical

innovations introduced. GRODY was the first major applica-

tion written in Ada and thus is classified as a first-

generation Ada system. GOADA and GOESIM were started after

GRODY was nearly completed. Because these projects drew

heavily on the lessons learned from the GRODY project, they

can be viewed as second-generation Ada projects.

J
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Finally, UARSTELS began shortly after the two GOES projects

entered implementation. Because this project emphasized

improving the designs developed on GOADA and GOESIM, it can

be viewed as a third-generation Ada project.

1.3 __¢OPE

This report covers the technical issues associated with

coding and testing software systems in Ada as these issues

have evolved over the history of all four of the Ada simula-

tion projects: GRODY, GOADA, GOESIM, and UARSTELS. The

three simulation systems that followed the GRODY project

were required to reuse as much of theGRODY code as feasible

and were thus greatly influenced by the design of GRODY.

Therefore, Section 2.1 presents detailed information about

the design of the GRODY system, which is necessary in order

to understand the design, implementation, and testing of the

three subsequent Ada simulator projects. Much of the impact

of GRODY's design on these subsequent systems was not fully

understood until well into implementation, and thus was not

included in the previous report (Quimby and Esker, 1988).

This material is included here.

1.4 ORGANIZATION

Section 1 of this report provides some background information

on the projects studied. Section 2 discusses the relation-

ship between the design of these projects and the Ada features

used in their implementation and explains how the under-

standing and use of these features has changed from project

to project. Section 3 discusses the methodology used in

testing as it has evolved over the series of projects. Sec-

tion 4 presents some of the measurable characteristics of

each of the four Ada simulation systems. Section 5 presents

a summary of the lessons learned concerning implementation

and system testing of these Ada projects and includes a

number of recommendations for future Ada projects.

1-2
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_ECTION 2 - IMPLEMENTATION IN ADA

2.1 IMPACT OF DESIGN ON IMPLEMENTATION

Although code reuse can be beneficial, an

emphasis on reuse of a first-generation Ada

system is likely to be premature in any
environment.

GRODY was the first flight dynamics sateilite simulation sys-

tem written in Ada. This project significantly influenced

the design and development of subsequent satellite simulation

systems, which reused substantial portions of GRODY code.

Reuse of major portions of GRODY code brought with it reuse

of major portions of the GRODY design. Sections 2.1.1

through 2.1.3 trace the history of the major design issues

and decisions that have been made on the projects GRODY,

GOADA/GOESIM, and UARSTELS. The design issues discussed

below are important not only because of the impact they have

had on the implementation of the system from which they orig-

inated, but also because of their impact on the design and

implementation of subsequent simulation projects written in

Ada in the flight dynamics area.

2.1.1 THE GRODY DESIGN

The GRODY design used nesting as a mechanism

to restrict visibility and used globally

visible enumerated types to name simulation

input and output parameters. These name

decisions made it necessary to rework GRODY

code extensively before it could be reused on

subsequent systems.

One of the earliest decisions made by the GRODY design team

was to partition the system into two subsystems, "User Inter-

face" and "GRO Simulator" (Figure 2-1). The GRODY system

description defined the "User Interface" as the subsystem

that "provides all contact with the user through screen

5602
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displays and generated output" (Lo et al., 1987). The "GRO

Simulator" subsystem implemented the simulation of the space-

craft. These subsystems were designed to execute concur-

rently, except that "GRO Simulator" would be paused or stopped

to allow the user to view or modify various simulation param-

eters within the system. Subsequent Ada dynamics simulators

have retained this basic high-level system architecture.

These two high-level entities represent "objects" in object-

oriented design. The "GRO Simulator" object stored the ini-

tial conditions for a simulation within the package "Simula-

tion Parameter Database" (.Figure 2-2). These values were

read by the various "Truth Model" components whenever these

data were needed for a computation. The computed simulation

parameters were maintained as state data within the "Truth

Model" components of the "GRO Simulator" subsystem. The

GRODY design also stored the simulation results within the

confines of the "User Interface" subsystem, using a file

management subsystem implemented in a package named "Simu-

lation Results." This package contained the declaration of

a single file, "Result File," to which all simulation data

was logged, including simulation parameter updates, error

information, ground commands, and the simulation data itself

(Lo et al., 1987). The "Parameter Database" and "Simuiation

Results" packages were intended to provide single objects

for system input and system output, respectively. Each of

these packages managed data for a single file object. The

only practical way to do this was to restrict to a handful

the number of different types of data objects to be stored

in these files.

Given the restricted number of types that could be written

to the files and the nearly 200 different simulation param-

eters and result outputs in the system, the design team used

two approaches to minimize the number of types required

5602
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by the system. First, the GRODY team determined that ii

forms of data collectively define all of the different

fundamental types of information needed by the system:

• Integers

• Real numbers

• Booleans

• Strings

• Arrays of Booleans

• Arrays of integers

• Arrays of real numbers

• Arrays of three-element vectors

• Arrays of 3x3 matrices of real numbers

• Two-dimensional arrays of real numbers

(3x3 matrices)

• Time

Second, these ii types could be further reduced to a single

data type by using a variant record type (named PARAMETER

VALUE), with ii different component types in the variant

portion of the record. Thus, each simulation parameter and

result parameter was declared as an object of type PARAMETER

VALUE, constrained to one of these ii data types.

The choice of the representation of data affects the struc-

ture of individual statements, subprograms, and the overall

system architecture. Conversely, the design of a particular

system architecture can affect the structure of data manipu-

lated by the system:

5602

... decisions about structuring data cannot

be made without knowledge of the algorithms

applied to the data, and ..., vice versa,

the structure and choice of algorithms often
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strongly depend on the structure of the

underlying data. In short, the subjects of

program composition and data structures are

inseparably intertwined. (Niklaus Wirth,

1976)

In the case of GRODY, the way the system was designed deter-

mined the representation of data to be manipulated by the

system. This data representation in turn determined the

form in which individual declarations and assignment and

control statements were implemented throughout the entire

system. The following sections discuss how the design and

implementation of GRODY has shaped subsequent Ada projects.

2.1.2 THE SECOND-GENERATIONADA PROJECTS: GOADAAND GOESIM

The first two follow-on projects from GRODY

were the first simulation systems to use

separately compilable entities to minimize

recompilation overhead incurred during

implementation and testing.

The next two Ada projects in the flight dynamics area were

production satellite simulation systems to be used in support

of GOES-I. GOESIM is a batch system used to generate telem-

etry data in support of the GOES-I attitude ground support

system. GOADA is the same type of simulator system as GRODY.

Both of these projects were required to reuse as much of the

GRODY design and code as possible. Typically, components to

be reused were extracted from GRODY by the GOADA team, modi-

fied, and then incorporated into both GOES-I simulators.

Thus, a discussion of the GOADA project can provide an under-

standing of how the use of Ada in implementation has evolved

in making the transition from a research-oriented project to

production Ada systems.

The GOADA designers intended (Agre, 1989) that the GOADA

design maximize reusability in two ways:

• "Reuse of GOADA for future simulator development

efforts."

5602
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• "Reuse the design and code of the GRODY simulator

where applicable in the GOADA design."

It became apparent during the preliminary design phase of

GOADA that these two requirements were contradictory. GRODY

had been implemented in a manner such that only a small frac-

tion of the design and code could be reused verbatim. More-

over, even though GRODY code could be modified for reuse on

GOADA, several team members concluded that reused code from

a first-time Ada project was not a likely source of compo-

nents that were deliberately designed for reuse on subsequent

simulation systems.

Quimby and Esker (1988) discussed in detail the primary

reason the GRODY system was not suitable as a source for

reusablesoftware to be used on future systems: the use of

nesting in GRODY to restrict component visibility. As a

consequence, the GOADA team was forced to undertake a major

restructuring of the entire GRODY system to allow component

reuse with modification of some of this code in GOADA.

Although nesting of GRODY components was a major contributor

to textual and compilation dependencies among components

within the system, a deeper problem facing the GOADA team

was the GRODY system architecture. A single, very large

data structure called "Parameter State" was used in the "GRO

Simulator" subsystem to provide the initial values of all of

the simulation parameters. Since 139 parameters were used

in the simulation, an array of 139 different elements was

used to store these initial values. The array itself was

maintained within the package "Parameter Database," which

exported the operations used to read and write to the state

array "Parameter State" (Figure 2-3). The declaration of

this single array required nearly 300 lines of code. Each

time a parameter was added, modified, or deleted, this data

structure had to be modified and the unit recompiled.

5602
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Just as all of the initial values of the simulation parameters

were maintained in a single variable in GRODY, all 139 of the

simulation parameter names (as well as an additional 31 simu-

lation result names) were declared in the declaration of a

single enumeration type, called DATUM NAME. This particular

structure greatly increased the compilation dependencies among

components in a system that already had extensive compilation

dependencies due to its nested architecture. The dependency

problem was particularly severe because these two type decla-

rations were contained in a single type package called "GRO

Simulator Types." This package was referenced by allcompo-

nents in the simulator subsystem and by components in the user

interface subsystem that handle the retrieval, manipulation,

and storage of simulation parameters. Just as for the data

structure "Parameter State," each time during the development

of GRODY a parameter was added, renamed, or deleted, this

type declaration had to be modified and the unit recompiled.

However, recompiling "GRO Simulator Types" meant that almost

the entire system had to be recompiled. Such an overhead was

clearly unacceptable for a system the size of GRODY and GOADA.

The GOADA team recognized that the GRODY code would have to

be substantially redesigned and reworked to accommodate an

approach suitable for programming a production system. They

decomposed DATUM NAME into a number of enumeration types,

each of which had a much smaller number of enumeration lit-

erals. Then they localized these type definitions in sepa-

rate type packages associated with individual objects or

subsystems. Thus, a package called "CSS Types" was devel-

oped for the "Generic Coarse Sun Sensor" package, a package

"Solar Sail Types" was developed for the "Generic Solar Sail"

package, and so forth. With this approach, an enumeration

type such as CSS PARAMETER NAMES contained only those param-

eter names needed by the package modeling the coarse Sun

5602
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sensor, in this case about 29 names. The GOADA team also

broke the "Parameter state" data structure into smaller data

components and then distributed these components among the

various packages that model particular hardware objects. As

in the case of DATUM NAME, the simulation parameters related

to the manipulation of the coarse Sun sensor (CSS) data were

extracted from "Parameter State" and localized in the body

of the package that models the actions of the CSS. These

parameters collectively represented the state of the package

"Generic Coarse Sun Sensor."

The GRODY architecture also had an adverse effect on the way

in which the design of the system was implemented in code.

For example, the sensors and actuators modeled in GRODY were

to be abstract state machines according to the design. As

abstract state machines, each of these hardware objects was

supposed to maintain state information needed by the package

that modeled the onboard computer (OBC). However, because

much of the data (i.e., the initial simulation parameters)

manipulated by each of these objects was not maintained as

state information in the package bodies of the individual

hardware components, these objects were not true abstract

state machines as the design intended. By restructuring

these hardware objects so that each maintained the state of

all of the data that it used and manipulated, the GOADA team

was able to realize to a greater degree the advantages of

object-oriented design.

GOADA and GOESIM made significant contributions in the flight

dynamics area to the implementation of an architecture more

suited to the development of medium- to large-scale systems.

Although other problems inherent in the design and implemen-

tation of code reused from GRODY remained in these systems,

the greatly reduced compilation dependencies resulting from
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the restructured components have substantially increased the

ease with which these components can be reused on subsequent

systems.

2.1.3 THE THIRD GENERATION: UARSTELS

UARSTELS is the most innovative system in

the flight dynamics area to date in its use

of the Ada generic facility to create

verbatim-reusable components.

The UARSTELS project was characterized as a third-generation

Ada project in Quimby and Esker (1988), primarily because of

its contribution to the development of software components

that can be reused verbatim on a subsequent simulation sys-

tem. UARSTELS has clearly demonstrated that the development

of reusable components is an achievable goal in the flight

dynamics area. On the other hand, the project members

stated that they felt severely constrained by the require-

ment to reuse GRODY code when trying to create components

that could be reused on a much wider range of satellite

mission projects.

While most of GRODY's code was difficult to reuse, subse-

quent Ada teams were able to reuse a few components that

were implemented as generic packages. These components

include a set of utilities, a numeric integrator, and a

"Generic Ephemeris Model." In the opinion of the UARSTELS

development team, the GRODY project's most important contri-

bution to implementation was the manner in which it used

generic packages in structuring the "Generic Ephemeris Model"

component (Figure 2-4). This package provides three differ-

ent options for generating time-tagged satellite position and

velocity data that describe an orbit, and does so by instan-

tiating three different generic packages within its body.

UARSTELS used this approach of nesting generic instantiations

in developing the "Generic Hardware" package (Figure 2-5).

5602
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This package is a high-level abstraction used to instantiate

17 different software components that represent the various

hardware objects residing on the UARS satellite (Figure 2-6).

The hardware-specific details belonging to each hardware ob-

ject have been extracted from previous hardware packages

developed for GRODY and GOADA and replaced by generic param-

eters that are provided for each instantiation of a particu-

lar hardware component (Booth, 1989).

The package "Generic Hardware" illustrates the extent to

which the UARSTELS project has increased the use of the gen-

eric features of the Ada language in building components out

of a layered sequence of generic instantiations and generic

parameters supplied to successively higher-level generic

objects (Stark and Booth, 1989). Thus, the instantiation of

a hardware object such as the fixed-head star tracker (FHST)

represents a structure composed of several levels of instan-

tiated generic components. The package :"FHST" imports the

generic packages "Generic Model FHST" and "Generic Hardware"

and instantiates these in its specification as the function

"Model" and the package "Hardware," respectively. The gen-

eric function "Generic Model FHST" has three generic subpro-

gram parameters, "Corrupt," "External Model," and "Digitize"

(Figure 2-7). The subprograms "Corrupt" and "Digitize" are

exported by instantiations of the "Generic Sensor Corruption"

and "Generic Sensor Digitization" packages, respectively.

Finally, the body of the "Generic Hardware" package contains

a nested package "Output" that is an instance of the generic

package "Sensor Output." In the specification of "Sensor

Output," there are three instances of generic file output

packages: "Report Writer," "Data Set," and "Plot File"

(Figure 2-8).
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2.1.4 USING A COMPILED DESIGN

Further research will be required to deter-

mine when a compiled design is beneficial for

simulation systems produced in this environ-
ment.

The Ada projects GOADA, GOESIM, and UARSTELS developed a

compiled design during the design phase of the life cycle

(Quimby and Esker, 1988). At the time of the critical design

review (CDR), the designs of these systems were expressed in

compiled program design language (PDL) that included compiled

control statements and calls to subprograms in lower-level

packages written as comments. At the time, most development

personnel viewed this form of design as potentially bene-

ficial to the development process.

At present, it is not clear what effect developing a compiled

design has on the life cycle of an Ada simulation system in

the flight dynamics environment. The detailed design for

any simulation system in this environment undergoes substan-

tial changes between the CDR and the end of acceptance test.

Many of these changes are due to requirements changes, which

often occur during development because the satellite has not

been fully specified at the time development begins. Given

that some portion of the requirements for a simulation system

can be expected to Undergo significant changes, it is prob-

ably advisable to invest an effort in developing detailed

PDL only in those aspects of the system that are well defined

and stable.

Another factor affecting the advisability of developing a

compiled design in Ada is the availability of computer

resources. This issue was not discussed in Quimby and Esker

(1988), although that document did note that Ada compilers

are complex systems that consume far more central processing

unit (CPU) resources than do FORTRAN compilers. Developers

interviewed during the coding phase felt that access to
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t

hardware resources was not adequate during detailed design.

A scarcity of computer resources thus may inhibit the rate

of progress on development of the design by slowing down the

process of getting a design compiled.

One of the section managers raised the concern that the

development of a compiled design may inhibit the development

of the project by turning the developer's effort from design

issues to coding. The large investment in effort to develop

and compile a detailed design may also reduce the developers'

ability or willingness to modify the system when it is tech-

nically good to do so.

The life cycle model may also have an effect on the useful-

ness of developing a compiled design. A waterfall model was

used in developing these systems. It is possible that devel-

oping a compiled design may be more suitable with alternative

software development models that offer greater flexibility

in response to requirements uncertainty or volatility, such

as the spiral model, rapid prototyping, transformational

analysis, or incremental development (Agresti, 1986). Fur-

ther research will be required to determine if a compiled

design is beneficial, the conditions under which it would be

beneficial, and the level of detail to which it should be

elaborated.

2.2 TRANSITION FROM DESIGN TO IMPLEMENTATION

The graphic notation introduced by GRODY and

improved on by GOADA and UARSTELS was helpful

to developers in implementing the design.

The transition from design to implementation on the GRODY

project was difficult for a number of reasons. The major

reason was simply that the design was not complete at the

time of the CDR. Although some package specifications had

been compiled at that time, much of the system was still

undefined. In addition, even after the CDR had been held,

5602

2-19



the team washolding many discussions about how to structure

the system.

The transition from design to implementation on the three

simulation projects that followed GRODYwas Smoother. During
the design phase, developers on these projects were fully

exposed to the mechanics of developing Ada code when they

compiled package specifications and PDL. In addition, they

had to become familiar with unit compilation dependencies,

context clauses, and Ada library structures. This experience
was a benefit of deVeloping a compiled design.

The difficult transition for the GOADAdesign team was

unnesting the GRODYcode during preliminary and detailed
design. By the time the formal coding phase had started,
the GRODYcode had been_restructured. The Projects GOESIM

and UARSTELSwere able to reuse most of the unnested pack-

ages that they needed from GRODYby taking them directly
from the GOADAproject.

The other issue in the transition from design to implemen-
tation was the effects of a graphic representation of the

design on the coding and testing phases of the projects.

Most developers felt that the graphic notation was helpful

in communicating design changes among the developers on a

given project. However, substantial overhead was required
to maintain and update the design document. A commonly

expressed opinion was that too much effort was required to

update the design notebook manually, and that the resources

for doing so were too scarce. The design documentation was

maintained using a graphics software package (MacDraw®) on

Apple Macintosh® personal computers. Although this system

is easy to use and produces professional-looking documents,

the scarcity of these computers and the lack of CASE capabil-

ities in the graphics package limited the usefulness of this
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approach. A more recent Ada project is experimenting with

the use of a commercially available object-oriented CASE

tool that runs on more widely available IBM-compatible

personal computers. Other CASE tools that support object-

oriented design are being introduced in the market and should

be evaluated for potential use in this environment as they

become available.

2.3 USE 0FADA FEATURE8 IN IMPLEMENTATION

The requirement to reuse code from the first-

generation Ada project has made limited prog-

ress in making optimal use of the features of

the language.

The Software Engineering Laboratory (SEL) analyzed each of

the four projects GRODY, GOADA, GOESIM, and UARSTELS after

each project completed system testing, using the Ada Static

Analysis Program (ASAP). This tool was developed at the

University of Maryland for collecting software metric data

on Ada projects (Doubleday, 1987). ASAP can be used to gen-

erate a profile of Ada features used on an analyzed system.

Table 2-1 shows the profiles of some of these features for

the four simulation systems. The use of these features is

discussed in the remainder of this section.

2.3.1 DATA TYPES

The use of variables, constants, and formal

parameters has changed slowly from the
FORTRAN environment.

A previous study of the GRODY project (Godfrey and Brophy,

1989) described what the authors considered to be a counter-

productive proliferation of derived types and subtypes in

the system. However, team leaders from each of the subse-

quent projects GOADA, GOESIM, and UARSTELS stated that they

were constrained by what they considered to be GRODY's under-

use of Ada's powerful data typing capability. The data

objects declared in the reused GRODY code reflect the strong
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Table 2-1. Profiles of Ada Features Used

Type Declarations

Package

Specifications

Generic Package 9

Specifications

Generic Package 44

Instantiations

EXcePtions 103
Declared

Raise Sta£ements 388

Tasks 8

GRODY 1 GOADA GOESIM UARSTELS

417 772 372 726

53 109 71 78

30 23 41

99 68 116

162 87 70

710 360 295

3 0 0

iEstimate was extrapolated from the data successfully

processed by ASAP. ASAP was unable to analyze portions

of the GRODY code, apparently because of the heavily

nested architecture of this system.
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FORTRAN legacy in the environment. Most numeric variables,

constants, and record, array, and matrix components are of

type REAL, a user-defined floating-point type meant to mimic

the REAL*8 type widely used throughout the FORTRAN code de-

veloped for flight dynamics applications. As an approximate

measure of the extent to which user-defined data types have

been used in these systems, Figure 2-9 shows the proportion

of total Ada declarations and statements that are type decla-

rations for each project. (Line counts are shown later, in

Table 4-1.)

One of the reasons for Ada's strong typing mechanism is to

allow the compiler to prevent an important class of program-

ming errors, the accidental mixing of variables of different

types in the same expression (Barnes, 1989). Furthermore,

subtypes can be used to provide range checking on variables

at runtime and thus obviate explicit range checks in source

code. Although they currently disagree about the degree to

which user-defined and derived types should be used in simu-

lation systems, the team leaders of the three Ada projects

that followed GRODY all stated that subtypes should be used

much more extensively in future systems.

Developers from the GOADA project stated that the reused

user-interface code from GRODY prevented them from employing

user-defined enumeration data types. Instead, input and

output to the user interface were restricted to the pre-

defined type STRING, which is an unconstrained array of

characters. Use of user-defined enumeration types and

"Enumeration IO" causes the compiler to generate code that

verifies the correctness of character strings during exe-

cution and input/output operations. Use of the predefined

type STRING instead of enumeration literals requires that

developers write their own runtime checks.
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u

Most developers expressed the opinion that user-defined

enumeration types should be used to a greater degree on

future Ada projects.

2.3.2 EXCEPTIONS

Appropriate use of the exception mechanisms

in Ada is only apparent in the most recent

Ada projects developed in this environment.

Appropriate use of the exception mechanisms provided by Ada

has, in general, evolved very slowly in the flight dynamics

environment. This has been primarily due to two factors:

(i) an insufficient understanding of this feature of the

language among design and development personnel, and

(2) postponement, because of schedule pressure, of design

decisions about raising and handling exceptions. As a

result, exceptions have often been designed into a system

during the later stages of implementation and even well into

system testing. More rigorous and thorough unit and integra-

tion testing of software components during implementation

will expose inadequate or missing exception-handling situa-

tions that were not discovered during design. In addition,

with increasing reuse of well-engineered components that

export user-defined exceptions, developers of packages that

invoke these reused components will become more aware that

their design and code needs to recognize and handle these

exported exceptions. Figure 2-10 shows the proportions of

exception declarations and raise statements for the four

simulator projects.

The designers of the Ada language have been very explicit in

proscribing the use of exceptions as regular condition flags

(Barnes, 1989). However, there are several places in the

GOADA project where exceptions are used as a part of the

normal processing within a system. For example, the subpro-

gram "Schedule Events" of the package "Simulation Scheduler"

uses exceptions to control processing associated with pausing
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with pausiong and stopping the simulation and with detecting

ground commands issued during a simulation run.

Another issue concerning the use of exceptions is related to

the concept of levels of abstraction. Booch (1987, p. 53-54)

advocates that software components be designed so that they

export exceptions whose level of abstraction is consistent

with the level of abstraction the component itself represents

within the system. Specifically, components should not prop-

agate predefined exceptions such as "Constraint Error,"

"Numeric Error," and "Data Error," beyond package boundaries,

since these are predefined exceptions that are raised by the

runtime system when an incorrect value is assigned to a vari-

able. Although a number of packages within the GOADA system

did propagate predefined exceptions, more recent Ada projects

are only exporting user-defined exceptions as recommended by

Booch (1987).

Another objection to raising predefined exceptions is that

the specification of a package cannot explicitly export these

exceptions. A developer who uses this kind of package would

have to rely on documentation stating that one or more prede-

fined exceptions might be raised. In addition, the developer

could not write an exception handler that could distinguish

between the predefined exception raised by this particular

package and the same predefined exception raised by some

other program unit in the system. GOADA violated this advice

in that most of the hardware components captured and raised

"Constraint Error" and "Numeric Error" exceptions to the

next higher level in the system architecture. This practice

has been discontinued on the subsequent simulation projects.
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2.3.3 ABSTRACT DATA TYPES

Ada systems are evolving toward the use of

abstract data types and abstract state

machines for most problem domain objects in

the flight dynamics area.

Abstract data types are one of the most important kinds of

components that can be developed using the Ada package con-

struct. The first use of abstract data types in the flight

dynamics area occurred on the Flight Dynamics Analysis

System (FDAS), a research project that was the first Ada

project started in this environment. For this project, two

generic packages were used to implement complex data struc-

tures: a generic balanced binary tree and a generic stack.

Although abstract data types were not used at all on GRODY,

they have been used on all subsequent simulator projects. A

major reason for this adoption was that GSFC licensed the

source code for a large number (501) of commercially avail-

able Ada software components by Grady Booch. This collection

of components includes all of the standard complex data

structures, such as stacks, linked lists, queues, dequeues,

graphs, binary trees, maps, and sets. The GOADA project

used an instantiation of a generic queue package to implement

an event-driven scheduling algorithm. The GOESIM project

employed a generic ring component by Booch.

The use of abstract data types can be extended beyond data

structures to problem domain objects such as sensors. The

simulators discussed in this document distribute some of the

hardware object states to a parameter database component.

However, it is possible to implement sensors as abstract

data types and then build components around these types

(Stark and Booth, 1989).
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2.3.4 GENERICS

The greatest technical advance in implementing

Ada systems in the flight dynamics area is

occurring in the use of the generic feature of

the Ada language.

GRODY was the first Ada project to write generic components,

although only a handful of packages were generic. These

packages included "Generic Utilities" and the generic pack-

ages that compose the generic ephemeris component. The use

of generic packages was expanded on the GOADA and GOESIM

projects, whichused them to implement the hardware objects

in the system.

The UARSTELS project was the first Ada system to use the

generic feature of the language extensively. The UARSTELS

development team was the first to recognize and advocate

that the design and development of verbatim-reusable com-

ponents in Ada requires the use of the generic feature of

this language. The UARSTELS team also recognized that the

consumption of a few minutes of CPU time for a recompilation

to effect a change across a number of generic instantiations

can simplify the development process. (However, scarcity of

computer resources may detract from this benefit.) Using

generics allows the developer to limit the scope of a change

to the template that specifies the algorithm being used (the

generic itself), or to a specific generic parameter that is

supplied to the generic during instantiation. This approach

partially automates the process of changing the system, in

that the compiler propagates the change across all logically

affected components. Without generics, developers would

have to edit and compile n source files to effect this change

over n components. This occurred several times as changes

that affected all 17 hardware components were made by modi-

fying the generic hardware package and then compiling the 17

instantiations with a single "recompile" command.
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Figure 2-11 shows the use of generics on these four projects

as measured by the ratio bf generic package specifications

to non-generic package specifications. There is a clear

trend of increased use of generlcs, from GRODY (0.17) to the

second-generation projects (0.28 and 0.32 for GOADA and

GOESIM, respectively), to 0.53 for UARSTELS.

2.3.5 TASKS

Ada tasks will continue to be used where

appropriate in the flight dynamics
environment.

The task construct has been the most difficult Ada feature

to use effectively on this series of simulator systems,

particularly on the GRODY project. When design problems led

to deadlock situations during the later stages of GRODY

implementation and system testing, the developers attempted

to address the problem (inappropriately) by adding more

tasks until the user-interface subsystem contained seven

different task objects. The original purpose of using tasks

on GRODY was simply to toggle between the execution of the

simulator and execution of the user interface so that the

user could enter commands, view output from the simulator,

and so forth. The GOADA project, which reused the GRODY

user-interface subsystem, redesigned it so that the desired

ability to toggle between executing the user interface and

the executing the simulator could be accomplished using only

three tasks. Tasks have not been used on the GOESIM and

UARSTELS projects because they are not appropriate appli-

cations for this particular feature of the language, given

the sequential nature of the processing requirements on

these projects.

Since a satellite houses a number of sensors, actuators,

and other hardware components that function in parallel,

future satellite simulation systems could be designed with

multiple tasks to take advantage of future multiprocessor
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or high-performance single-processor computer systems. At

present, the overhead associated with the rendezvous mech-

anism of Ada tasks on the current version of the Ada compiler

used in this environment is still too high to allow single-

CPU systems to execute satellite simulation systems with a

large number of tasks within required time constraints.

Ada is the first high-order language that supports parallel

or concurrent program execution without operating system

calls or low-level monitors or semaphores at the source code

level. As such, it substantially simplifies the process of

developing portable concurrent systems (Gehani, 1984). How-

ever, developing concurrent software systems is inherently

more difficult than developing sequential systems. Lack of

experience or knowledge in this area appears to be the pri-

mary reason for the difficulties developers in this environ-

ment have had in using the task construct of Ada.

2.4 RESOURCES

2.4.1 HARDWARE RESOURCES

Preliminary observations suggest that computer

resources should be increased to handle CPU-

intensive Ada compilers and the associated

recompilation overhead incurred during devel-

opment of Ada systems.

A common complaint among all Ada personnel was that access

to hardware resources was not adequate during development.

Developers estimated that on average, computer terminals

were only available about 60 percent of the time they were

needed. In addition, system throughput was often poor,

especially for developing GOADA's compiled design on the VAX

11/780. Compiling a single GOADA subprogram sometimes took

20 to 30 minutes or more during peak hours. Finally, the
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communication between the terminals and the development

system was unreliable and subject to frequent failure.

During development, recompilation of the system often

required many hours and further degraded the performance of

the host system. This situation did not improve during

coding and system testing, even with the introduction of the

more powerful VAX 8810. The demand for computer resources

for developing three Ada simulation systems in parallel

increased beyond the effective capacity of the newer VAX.

2.4.2 SOFTWARE DEVELOPMENT TOOLS

The software development environment for Ada

in the flight dynamics area is highly rated

by all Ada software development personnel.

The coding and system testing of the GOESIM, GOADA, and

UARSTELS projects was performed first on a Digital Equipment

Corporation (DEC) VAX 8600 superminicomputer and later moved

to a VAX 8810. The entire GRODY development took place on

the VAX 8600. All four projects used the DEC Ada compiler

and other tools in the Ada Compilation System (ACS). The

other major DEC-supplied tools used on all projects included

the symbolic debugger (SD) and the Code Management System

(CMS). The first tool to be widely adopted on Ada projects

outside of GRODY was the Language Sensitive Editor (LSE),

introduced by developers on the FDAS project. The LSE is

used primarily because of the ease with which a user can

isolate and correct compilation errors without leaving the

editor. The LSE is particularly important for development

and testing because it is the focal point from which most

other tools are invoked.

Package Helper and Lister, two other tools written by devel-

opers on the FDAS team, were also adapted by the projects

that followed GRODY. Package Helper receives a user-specified
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Ada package specification and then generates templates for

the package body and the subunits to match the specification.

Lister was used to generate listing files from the VAX.

Table 2-2 lists the software development tools used in the

implementation and testing phases.

2.4.3 PERSONNEL RESOURCES

Experienced Ada personnel continue to be a

critically important but scarce resource in
this environment.

A standard approach to development in this environment is to

staff software projects with more junior personnel during

the coding phase (Table 2-3). At this point in a project's

life cycle, the more senior personnel have already generated

a design and are available to assist the less-experienced

personnel and provide guidance as they work on the system.

This same approach is being used on the Ada projects, and it

appears to be an effective way to handle an extremely scarce

resource: s0ftware engineers with project experience in Ada.

The problem, then, is to staff projects with personnel having

the right mix of software development expertise and applica-

tion area expertise. Ada's greatly increased syntactic and

semantic complexity, compared to FORTRAN, has exacerbated

this problem. Managers have preferred to staff the Ada proj-

ects developed in this environment with software development

personnel who have undergraduate or graduate degrees in com-

puter science. Developing well-structured Ada software that

uses the features of the language effectively requires a

strong foundation in computer science or software engineer-

ing. On the other hand, satellite attitude determination

and orbit propagation are skills that require a detailed

knowledge of physics and mathematics. Few individuals with

both sets of skills can be found; moreover, it is unlikely

that developers already on staff with a background in one

area can be trained to the same level of competence in the
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Table 2-2. Software Development Tools Used for

Implementation and Testing

GRODY GOADA GOESIM UARSTEL$

ACS yes yes yes yes

CMS yes yes yes yes

LSE no yes yes yes

SD yes yes yes yes

Source. Code no no no no

Analyzer

DEC Test Manager no no no no

Package Helper no yes yes yes

Lister no yes yes yes

Table 2-3. Experience of Ada Developers at Beginning

of Coding Phase

Number of personnel

on project

Personnel with pre-

vious experience in

application area

Personnel with pre-

vious project experi-

ence in Ada

GRODY __QADA GOESIM UARSTELS

7 7 5 3

1 1 1 3

0 1 1 1
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other area. Thus, it remains an important part of task plan-

ning to attempt to retain a mix of personnel with differing

areas of expertise and skill levels.

Figure 2-12 shows the distribution of total activity through

system testing for the four simulation projects. The left

graph in this figure shows this distribution for GRODY and

GOESIM, and the right graph shows this distribution for

GOADA and UARSTELS. The shapes for each pair are very simi-

lar. The more pronounced inverted-U shape in the left figure

is probably due to the fact that the developers on these two

projects were only available to work part-time but that dur-

ing the implementation phase of these projects they were

scheduled to work a larger percentage of their time on these

projects. GOADA and UARSTELS, however, were predominantly

staffed with full-time personnel, resulting in a flatter

effort distribution.

Does staffing a project with part-time personnel affect

either productivity or the quality of the system? Although

there is not enough information available at this point to

answer this question, developers on both GRODY and GOESIM

reported that having to split their time between two or three

different projects in different languages and even different

hardware and operating system environments was overwhelming.

In addition, the use of full-time personnel allows smaller

teams, which limits the number of channels of communication

between the team members, thus eliminating a well-known

source of errors and misunderstandings in developing large

systems (Brooks, 1975).
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SECTION 3 - TESTINg IN ADA

The approaches to testing on the Ada projects

developed in this environment have undergone

major changes from those employed on FORTRAN

systems.

In the life-cycle model used in the flight dynamics envi-

ronment, software testing activities include unit testing,

integration testing, build testing, system testing, and

acceptance testing (Card et al., 1985). Unit, integration,

and build testing are considered parts of the implementation

phase of the life cycle, whereas system testing is considered

part of the test phase (Wood and Edwards, 1986). Testing as

a development process includes all testing activities per-

formed by the project development team. It ranges from

testing and debugging individual units (unit testing) through

testing the behavior of the entire system as a "black box"

(system testing). Postdevelopment acceptance testing is per-

formed by the users to determine if the system satisfies the

original requirements. Since this document is concerned

with Ada software development as a process performed by the

developers of these systems, the emphasis in this section

will be on all testing activities up through system testing.

FORTRAN and Ada systems have fundamental structural and

semantic differences that require that the entire issue of

testing be reexamined in this environment. In general, the

established testing procedures and methodologies used in the

flight dynamics environment have been based on experience

with FORTRAN. The approach to testing used on these Ada

projects strongly suggests that the standard categories of

testing recommended for software development in FORTRAN for

this application area are not appropriate for Ada.
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The recommended approach to testing for FORTRAN projects is

to unit test individual components, andthen integrate these

tested components incrementally from the top down (Card

et al., 1985). Section 3.2 will explain that our experience

with these projects indicates that we are evolving towards

replacing this technique with a bottom-up, incremental testing

process that minimizes the distinction between unit and inte-

gration testing and instead concentrates on an iterative

approach to developing incremental builds of increasing

functionality.

3.1 UNIT TESTING

The Ada library package is now considered the

basic unit for unit testing. Units are tested

in combination with lower-level components

invoked by the unit being tested.

Unit testing as defined in the flight dynamics environment

owes its origins to system development with FORTRAN. For

this language, unit testing is the testing of individual

subroutines that are usually stored in separate source files.

The term "unit" as used here is synonymous with the term

"module," Whfch=_s Usually de%ineB as a named and bounded

contiguous sequence of statements (Yo_rdon and Constantine,

1978, p. 416). A module can be compiled independently from

other modules (or units) and IS callable from any other mod-

ule within a system (Myers, 1979). This separation of source

files has made it relatively easy in FORTRAN development

environments to test individual modules separately from the

rest of a system.

Although unit testing of FORTRAN systems in this environment

is classified as a testing activity, it is considered part

of the implementation phase of the life cycle, rather than

part of either testing phase. As such, unit testing is

carried out by the developer of the unit and is less formal

than system or acceptance testing. It is usually performed
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in the developer's working area and uses the developer's own

test data, drivers, and stubs that are written for each unit

as it is tested. Once the unit has been successfully tested,

it is submitted to a controlled library (Card et al., 1985).

One of the discoveries made early during the first Ada proj-

ects was that the concept of testing is much less straight_

forward for systems developed in Ada. The first testing

problem that the developers faced on FDAS and GRODY was

determining what "unit testing" meant in Ada. This problem

is complicated by several factors. First, Ada is a block-

structured language that allows the textual nesting of pro L

gram units within the declarative region of other program

units. For example, procedures and functions that are nested

in the declarative region of another subprogram, or are

declared within the body of an enclosing package, cannot be

unit tested using the traditional driver-and-stub approach

of FORTRAN (Myers, 1979, p. 12). This is because scope

rules of the language hide nested subprograms, which cannot

be invoked directly from any driver outside of the component

within which the procedure or function is nested. Although

the subunit feature of the Ada language allows these nested

units to be localized within a separate file (with a stub

indicating the logical position of the separate unit within

the declarative region of the encompassing subprogram), they

are conceptually nested and still cannot be unit tested apart

from the parent subprogram.

A second but related difficulty with the unit testing issue

was the language's provision of additional program con-

structs, particularly the package and task. In a typical

Ada system (including FDAS and GRODY), nearly every sub-

program is declared within a generic or nongeneric package.

Few, if any, are independent, compilable entities (called

library subprograms). Although subprogram bodies are

3-3
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usually implemented within separately compilable entities

called subunits, they are still an integral part of the

package within which their specifications are declared, and

thus cannot be unit tested apart from the package to which

they belong.

Unit testing was further complicated by Ada's scope and

visibility rules, particularly as these are related to the

package feature of the language. For example, the decla-

rations of local variables or constants (objects) in a

subprogram often refer to type declarations that are local

to the package specification or package body within which

the subprogram is declared. Other local object declarations

in the subprogram may refer to types exported by one or more

packages that are themselves imported by either the specifi-

cation or the body of the package Within which the subprogram

is declared, or that are imported by the subprogram subunit

itself. In addition, functions exported from a referenced

package or the parent package may be used in initializing

the variables or constants that are declared within the

subprogram. Finally, executable code in the subprogram may

reference or modify state information maintained within the

body of the encompassing package.

The problem in unit testing subprograms in Ada, therefore,

is that they are often dependent upon information specified

in the body of the enclosing package, as well as information

exported by any package imported by the enclosing package.

Because of these considerations, all Ada projects since

GRODY have adopted the convention that the Ada library pack-

age is the "unit" in unit testing. Although each subprogram

exported by the package is individually tested, it is always

tested as a component of the encompassing unit or package.

This is especially true for packages that represent abstract

state machines, which maintain state information within the

body of the package. A subprogram that is exported by a

3-4
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package (declared in a package specification) can be unit

tested by developing a driver that invokes the subprogram

name qualified with the name of the package that exports it,

such as "Thrusters.Fire."

The UARSTELS package "Generic Star Catalog" provides an

example of the kind of component typically developed in a

satellite simulation system (Figure 3-1). This generic

package is an abstract state machine with a state area that

maintains a catalog of all stars above a specified bright-

ness threshold. The state area also maintains several sub-

sets of this catalog, each of which represents the collection

of stars within the field of view (FOV) of each star tracker

on the satellite. The package exports procedures "Initialize,"

"In FOV," and "Position of." To test the instance of the

generic package as a unit, a driver was constructed that

invoked each of the exported routines in sequence. The DEC

symbolic debugger was used to examine changes to the state of

the package body after each routine was invoked or to examine

any parameter values by a call. Thus, the "Initialize" rou-

tine was called by the driver, and the symbolic debugger was

used to examine the contents of the dynamic array created

after "Initialize" read in the "Star Catalog" from a file.

The function "Position Of" was tested by examining the right

ascension and declination value returned for a specific star

identification number.

The DEC symbolic debugger has been extensively used by all

Ada projects in the flight dynamics environment. The impor-

tance of such a tool cannot be overemphasized for any program

larger than a few hundred lines of code. The GRODY project

was particularly dependent on the symbolic debugger because

of its heavily nested system architecture (Godfrey and

Brophy, 1989). The nesting of package specifications in

package bodies precluded the use of driver routines that

could invoke exported subprograms of these nested packages.
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Furthermore, the specification of the encompassing package

was itself often nested within the body of another package,

and the specification of this encompassing package nested

within the body of another package, and so on. Even though

the subprogram bodies were subunits and thus were localized

within individual files, from the tester's point of view the

routine that was to be tested was nested up £o seven levels

below the driver routine that was developed to invoke it.

The only way to test this lower-level routine was again to

use the symbolic debugger. The debugger was also useful

when executing a procedure or examining data hidden in a

package body.

After Build 1 of FDAS was delivered, the team was joined by

two developers who had project development experience in

Ada. On the basis of their recommendation, all nested

packages were placed into individual files. This heavy

emphasis on library packages initiated by the FDAS project

has been followed by all of the Ada projects after GRODY and

has simplified testing on these projects. However, it

became apparent on the GOADA task that having one Ada pro-

gram unit per file is a necessary--but not sufficient--

condition for effective unit development and testing. The

GOADA team discovered this after they tried to use the

parent Ada library of the GOADA system as the configured

source library of the system. This library architecture

resulted in frequent large-scale recompilation of much of

the system, because low-level components were often modified

during the early phases of implementation. This approach

resulted in serious delays as developers waited for the

system to be recompiled.

The GOADA team solved this problem by restructuring the Ada

program libraries and organizing the individual program units

to allow these units to be developed and tested with minimal

recompilation overhead (Figure 3-2). The sublibraries were

3-7

5602



I

o_

in

il

i

II

M

J

w

.i
J

m

II

i

u

i

5602

3-8 mid

i



._.=

?

Y

used to control compilation dependencies at the subsystem

level. Primarily, the team placed specifications for math

and utility packages needed throughout the system within the

parent library. They then set up several Ada sublibraries

of this parent library to hold components associated with

individual hardware subsystems. The individual developers'

libraries were set up as sublibraries of these subsystem

libraries. Package specifications that were common to two

or more developers working on an individual subsystem were

placed in that subsystem's library. Test versions of indi-

vidual package specifications that were referenced by two or

more subsystems were placed in the parent library. The

development versions of these same package specifications

were placed in a subsystem library, where they could be

recompiled without affecting the other subsystems. All

other packages (specifications or bodies) that were specific

to individual subsystems were kept within the libraries of

individual developers.

This type of Ada library structure was also used on FDAS,

GOESIM, and UARSTELS. It is important to emphasize here

that this mapping of a software system architecture to a

program library architecture was not possible in the GRODY

project, because of the nested architecture adopted for this

system. These other projects, however, were able to utilize

the separate compilation features of the Ada language in

conjunction with the library management features of the DEC

Ada software development environment to unit test components

more effectively.

3.2 INCREMENTAL/INTEGRATIQN TESTING

For the Ada systems developed in this

environment, bottom-up, incremental testing

is replacing the top-down integration testing

approach used on FORTRAN systems.
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For FORTRAN systems developed in the flight dynamics environ-

ment over the last several years, integration testing is con-

sidered a part Of the implementation phase of the life cycle

(Wood and Edwards, 1986), rather than as a part of the test

phase (McGarry et al., 1983). A primary reason for this is

that a top-down incremental approach to integration testing

is now being followed, with unit tested modules added to the

system one or a few at a time and the combination of compo-

nents tested after each of these additions to the system.

This process may begin early in the implementation phase,

with the first few unit-tested modules integrated well before

most other modules within the system have even been coded.

Incremental testing has been used in one form or another on

most projects developed in this environment. There are two

major approaches £o incremental testing, top-down and

bottom-up. Top-down testing is the recommended approach to

integration testing for the FORTRAN systems developed in the

flight dynamics environment (Card et al., 1985). This ap-

proach starts with the top-level driver module, with stubs

substituted for the first level of subordinate modules that

are called by the driver. Once the driver is tested, the

called stubs are replaced with the real modules that previ-

ously have been unit tested, with additional stubs construc-

ted to substitute for the modules called by the newly added

subordinate modules. This composite of modules is again

tested, and any errors found Can usually be attributed to

the newly added subordinate modules, since the parent module

or modules have already been tested. This process continues

until the last stub has been replaced by an actual module.

One of the major changes these Ada projects have introduced

into the software development process in this environment is

to replace the top_d6wn approach Used in the FORTRAN projects
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with a bottom-up, incremental approach to testing. Although

the advantages of bottom-up testing as a methodology do not

depend on the programming language used, the newness of the

Ada language allowed the exploration of different approaches

to software development in Ada, including testing. FDAS was

the first project to introduce this technique. All subse-

quent projects have adopted this bottom-up approach to a

greater or lesser degree.

One of the main problems with the top-down approach is the

amount of effort that must be expended to develop the stubs.

Writing stubs is far more difficult than many developers

realize (Myers, 1979, p. 94). For the module being tested

to perform properly, the modules being called must return a

meaningful result. This may require the stub to simulate

the actual module with such fidelity that the stub may be as

complex as the module.

Although top-down incremental testing is not used on the more

recent Ada projects in this environment, top-down design is.

For the most part, the main program and the t0P-level package

specifications that compose major subsystems are written and

compiled first, followed by the next layer of package speci-

fications that compose lower-level subsystems, and so forth.

This coding of package specifications is one of the primary

activities associated with developing the preliminary design,

and has become a standard practice since it was introduced

by the GOADA project. During detailed design, the Ada pack-

age bodies and the compilable PDL for the associated subunits

that implement the specifications previously compiled are

written, from the higher levels of the system architecture

to the lower levels.

During implementation, the terminal or leaf modules of the

system are coded and unit tested first. These are the
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subunits associated with the lowest-leyel packages of the

system, which typically are mathematical utilities and file

input-output operations. Subunits associated with the next-

higher level of the system are coded and "unit tested" next.

However, here the term "unit testing" also includes integra-

tion testing, since the unit is tested in combination with

the lower-level package or packages invoked by the unit,

rather than with stubs. This essentially simultaneous ap-

proach to unit and integration testing suggests that these

terms do not adequately describe what the testing process

encompasses. The term "incremental testing" is more descrip-

tive of this approach to testing.

The Ada compiler provides type checking of actual parameters

against formal parameters. That is, the compiler rigorously

verifies the interfaces between components during the early

phases of implementation, a process that on a FORTRAN project

can only be approximated with extensive manual testing, rig-

orous code inspections, or use of software tools that perform

this type of checking for FORTRAN systems. Any changes that

are made to subprogram specifications or package specifica-

tions are flagged by the link command, and any units that

invoke the modified subprogram must be updated to reflect

these changes.

Bottom-up incremental testing initiates the integration

testing process at the bottom of the system hierarchy--that

is, at the terminal or leaf modules of the system. In this

case, drivers rather than stubs are constructed. Drivers

are easier to write than stubs, because they only have to

provide values for the actual parameters that match the for-

mal parameters of the invoked module and, perhaps, print out

the values returned from the module (Myers, 1979, p. 98).

Unlike stubs, drivers do not have to compute or return any

values.
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Once the terminal modules have been tested, the driver used

to test them can be replaced by the module that actually

invokes them. Another driver is constructed that invokes

the new module that has been added to the system, and the

new collection of components is linked and executed. Any

errors found at this point are probably due to the added

module, since the lower-level modules have already been

tested. It is important to emphasize here that the lower-

level modules have been tested already as a coherent collec-

tion of components. Furthermore, as each higher-level module

in the calling hierarchy is integrated into the system, the

lower-level modules are being retested, providing further

verification of the correctness of the system at that point

in the testing.

The GOADA project team decided early in implementation to

use bottom-up, incremental testing. However, it made this

decision after developing a plan that called for all sub-

systems to be developed in parallel, as is typical for flight

dynamics FORTRAN systems. GOADA did not change this plan to

accommodate an incremental approach to testing. As a result,

numerous problems arose during integration and system testing

that would have been resolved earlier in development if a

full bottom-up, incremental approach to development had been

used. One of the lessons of this experience is that an

incremental development effort requires careful planning to

ensure that components are developed in the sequence in

which they will be needed by higher-level components within

the system.

One other major factor argues in favor of the bottom-up

incremental approach to development: reuse. In the flight

dynamics environment, the components most likely to be used

from one system to the next lie at the bottom of the system

architecture. These are the terminal units of a program

that perform the bulk of the computational and data
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manipulation capabilities of the system. In FORTRAN, these

reusable software routines are those that perform numerical

analysis operations. In Ada, they include not only numerical

analysis components, but also those that implement complex

data structures, sort and search utilities, and numerous

other tools (Booch, 1987). The "Generic Utilities" subsys-

tem developed on GRODY was used with little modification on

all subsequent Ada projects within this area. Similarly,

the computationally intensive "Generic Ephemeris Model"

developed on GRODY has also been used on all subsequent sys-

tems, as mentioned in Section 2.1.3. Finally, commercially

licensed components that implement complex data structures

such as queues, rings, and linked lists, as well as various

character, string, and numeric utilities, have been incor-

porated easily into all of these Ada projects.

With bottom-up incremental development, these lower-level

reused components can be incorporated into a system early in

the implementation phase of the life cycle. Computationally

intensive simulation models can be written and tested well

before other parts of the system have been fully defined,

since the reused mathematical and utility components have

already been rigorously tested through prior use on several

other systems. This would not be possible with a top-down

approach to development, since the mathematical and other

utilities would not be incorporated into the system for

testing until late in implementation.

3.3 BUILD/SYSTEMTESTING

Build and system testing is a language-

independent activity. However, the greater

modularity incorporated in the more recent
Ada projects-may-be a major £actor in the

decreased effort required for system testing

on these systems.

i
m

z

• I

W

U

q"

w

w

"V

l

5602

3-14



w

L

Build tests and system tests are similar. The major differ-

ence is that build tests are performed during the implementa-

tion phase of the life cycle, and system tests are performed

during the test phase (Card et. al., 1985). The development

team performs both kinds of tests and evaluates their re-

sults. The planning for both is formal, with separate build-

and system-test plans developed by the project team. The

tests are based on the design and the requirements of the

system or build, and are meant to test the functionality of

the system or the completed build as an integrated unit.

A previous study of the system-test phase of the GRODY proj-

ect reported that the system-test plan developed for GRODY

was essentially the same as the system-test plan for GROSS,

the FORTRAN version of the Ada project (Seigle et al., 1988).

This is not surprising, since during system test the devel-

opers are running functional tests on an executable binary

image, rather than working with Ada source code. Developers

on each of the subsequent dynamics and telemetry simulators

have also reported that the types of tests used in system

and build testing were essentially language independent.

One of the major problems that the GRODY project faced during

the system-test phase was the lack of personnel with a suffi-

ciently detailed understanding of the spacecraft to analyze

test results (Seigle et al., 1988). A similar situation

existed on the GOADA project. The task leader was the only

task member with flight dynamics experience at the beginning

of the system-test phase. This situation improved when a

developer with expertise in the application joined the proj-

ect and when a member of the original GOES-I Dynamics Simu-

lator in FORTRAN (GOFOR) project also assisted part-time in

system testing.
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The GOESIM team also had no development team members who had

experience in the application area when system testing com-

menced. However, they had planned and were able to obtain

the assistance of some analysts to examine the output from

the system tests they ran. Two of the four task members on

the UARSTELS project had experience in either attitude ground

support systems or telemetry simulation systems.

Just as the architecture of the system affects all the other

phases of the life cycle, it can affect the ease or diffi-

culty with which an error can be isolated and corrected. The

GRODY team reported that the heavily nested architecture used

in their system required a great deal of recompilation each

time a change was made to almost any part of the system

(Seigle et al., 1988). Depending on how heavily loaded the

computer was at the time the change was made, each recom-

pilation could take many hours to complete, effectively

preventing other testers from making any other corrections

to the system.

3.4 TESTING TOOLS

Testing tools other than the symbolic debugger
were introduced late in this environment.

Future research will be needed to determine

their effectiveness.

The symbolic debugger, which is heavily used during coding,

is also used during build- and system-testing to locate

errors. The source code analyzer and the performance and

coverage analyzer are two of the majg_modification and

testing tools used for the more recent projects, especially

the Extreme Ultraviolet Explorer Satellite (EUVE) Dynamics

Simulator (EUVEDSIM) project. Some developers are also

looking at the DEC Test Manager, which will be used first by

EUVEDSIM. Future Ada projects developed on this type of

hardware and operating system environment will probably use

all of these tools as the experience base grows.
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SECTION 4 - PROJECT CHARACTERISTICS

4.1 SOFTWARE SIZE METRICS

Productivity and size measures of projects

will need to take into account the degree to

which Ada generics are used in a particular

system and the complexity of that system.

The ASAP software metric tool mentioned in Section 2.2 pro-

duces a detailed breakdown of line counts by component and

by project. ASAP was run on each project at the end of the

system testing phase, and the resul£s are shown in Table 4-1.

Of the two dynamics simulators, GRODY and GOADA, "GOADA is

larger (17.4 percent in source lines of code, or SLOC) be-

cause it has greater complexity. For example, GOADA provided

a batch operation mode in addition to GRODY'S interactive

mode. GOADA has more failure modes, three times as many

input screen displays, over twice as many ground commands, a

thruster history report generation capability, and so forth.

In general, there has been a correlation between the size of

the source code of flight dynamic systems in thousands of

SLOC (KSLOC) and the complexity of these systems. In an

effort to achieve a quantitative measure of complexity,

Boland et al. (1989) assigned relative values to spacecraft

components or capabilities, and showed that, for attitude

ground support systems at GSFC written in FORTRAN, there is

a strong correlation between spacecraft complexity and size

of the source code in KSLOC. However, with the use of Ada,

this correlation holds only if the features of the language

are used in a similar way or to a similar degree among the

systems being compared. For example, GOESIM is considerably

larger (35.3 percent in SLOC) than UARSTELS, and yet the

UARS satellite has about 10 percent greater complexity than

GOES-I (Boland et. al., 1989). Hence the software system
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Table 4-1. Ada Software Size Measures at End of System

Testing

INto

am;

GRODY GOADA GOESIM UARSTELS

SLOC 125,991 147,876 87,535 64,720

Lines of code 93,328 114,445 67,872 52,834

plus comments

(LOC&C)

Lines of code 57,661 73,229 42,326 36,001

(LOC)

Comments 35,667 41,216 25,546 16,833

Blank lines 32,664 33,431 19,663 11,836

Instructions I 22,586 26,352 16,343 13,313

Declarations 5,959 10,090 6,509 7,169

and context

clauses

Statements 15,109 16,262 9,834 6,144

Number of program 482 671 526 431

units

Average SLOC/unit 261 220 166 150

Average LOC/unit 120 109 80 84

Average number of 47 39 31 30

instructions/unit

iThe Ada Language Reference manual defines "statements" as

an action to be performed. The authors here have chosen to

use the term "instruction" to include statements, declara-

tions, clauses, and programs.

would be required to support more capabilities. The differ-

ence in source code size between these tw0 projects is due

primarily to the degree to which the UARSTELS project used

generic packages in place of multiple copies of similar com-

ponents. Thus, both productivity measures and size measures

of projects will need to take into account the degree to

which Ada generics are used in a particular system.
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The source line counts in Table 4-1 also should be viewed

with caution for other reasons. The definition of line

count being used results in large differences of the

particular counts. As shown in Table 4-2, for the Ada

simulation systems developed in this environment, there are

about five times as many SLOC as there are instructions.

Table 4-2. Ratio of SLOC to Total Instructions

SLOC

total instructions

GRODY GOADA GOESIM UARSTELS

5.6 5.6 5.4 4.9

The line counts are greatly affected by the particular coding

style adopted by the project or organization that is building

the system. The major factor contributing to the high ratio

of SLOC to instructions in the flight dynamics environment

is the style of code recommended by the Ada Style Guide

(Seidewitz et al., 1987). Developers are encouraged to use

readable English names and phrases in naming objects and sub-

programs, and a liberal use of white space is recommended to

highlight logically related blocks of code and to separate

type, variable, and constant declarations for readability

(Table 4-3). As a result, there is a consensus among the

Ada development personnel that the Ada code on these proj-

ects is much easier to read and understand than any of the

FORTRAN code that was reused from previous FORTRAN simulation

systems.

The free-format capability of the language, the recommended

code indentation and code layout from the Ada Styl_ Guid_,

and the use of long names result in Ada instructions that on

the average span several lines of code (Table 4-4).

w
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Table 4-3. Line Count Profiles at End of System Testing

Blank lines (%)

Comment lines (%)

LOC (%)

GRODY GOADA _ UARSTELS

26.0 22.6 22.5 18.2

27.8 27.9 29.2 25.9

i00.0 I00.0 i00.0 i00.0

Table 4-4. Average Number of SLOC per Instruction

GRODY GOADA GOESIM UARSTELS

2.58 2.78 2.59 2.72

4.2 REUSE

Software reuse was substantial on the second

Ada project. Software reuse has remained

steady on the projects under study; however,

software is now being designed for greater
reuse on other projects.

Figure 4-1 shows the percentages of components for the four

projects that are reused verbatim, reused with slight modifi-

cation (no more than 25 percent of the original component

changed), reused with extensive modifications (greater than

25 percent changed), and combined with new components. Reuse

on GRODY was limited to imported FORTRAN procedures obtained

from previous dynamics simulators. The estimated amount of

reuse at the time of the CDR for the three follow-on projects

to GRODY ranged from 30 percent for GOESIM to 50 percent for

UARSTELS. The actual amount of reuse proved to be lower than

estimated during implementation and system testing, with the

three projects leveling outso that the amount of reuse is

approximately the same across all three projects (Table 4-5).
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Table 4-5. Reuse 1 Levels at the End of System Testing

$RODY _OADA $OESIM UARSTELS

3 % 26 % 32 % 33 %

I reuse = (no. of verbatim components + no. of

slightly modified components)/total)

l

g

U

Reuse on £hese pr0_ectshas for the most part been limited to

reuse of GRODY components that were of general use in these

types of simulators, such as the mathematical utilities and

the ephemeris packages. Since the three subsequent projects

were developed on overlapping schedules, one project had

little opportunity to provide components that could be reused

by the other projects. The major exception to this was the

UARSTELS project: its components were designed and developed

so that the subsequent telemetry simulator project for the

EUVE (EUVETELS) required the minimum amount of new code.

4.3 DEVELOPMENT EFFORT THROUGH SYSTEM TE_TING

There is a noticeable trend indicating a

change in the life cycle: slight increases

in the design and implementation phases, and
a decrease in the system test phase.

Table 4-6 compares the predicted effort for development

through system testing to the actual effort. Managers

planned the projects and predicted effort based primarily on

the recommended approach outlined in the M%n_uers Handbook

(Agresti et al., 1984). However, because this approach is

based on FORTRAN, the managers said they subtracted approxi-

mately 5 to 10 percent of the estimated effort recommended

for implementation and system testing and shifted it into

predicted design effort. The actual total effort (through

system test) for all four projects is within I0 percent of

the predicted effort.
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Table 4-6. Predicted Versus Actual Total Staff Hours

Through SystemTesting

GRQDy GOADA GOESIM UARSTEL$

Predicted 22,700 22,750 12,070 10,450

Effort Hours

Actual 21,993 24,.096 11,690 9,521

Effort Hours

Difference -3 % +6 % -3 % -9 %

Figure 4-2 shows the distribution of effort by life-cycle

phase. There was no immediate significant change to the

effort expended during the life-cycle phases; however, the

Ada life cycle is changing slightly with each project and is

now slightly different than that expected for a FORTRAN proj-

ect. The GRODY projects shows no additional time needed for

design than that needed for its FORTRAN counterpart; however,

all subsequent Ada projects required additional time during

the design phase. This appears to support the developer's

statements that the design of GRODY was incomplete at the

time of the CDR.

Figure 4-2 also shows a decreasing trend in the percentage of

effort required during the system test phase when compared

to FORTRAN and a greater percentage of effort required during

the implementation phase. This may mean that the Ada com-

piler is capturing interface errors that are normally not

found until system testing in FORTRAN. Since these Ada

interface errors are found in implementation, they are also

being corrected in implementation instead of during system

testing. Thus, the lower percentage of effort expended

during the test phase may simply reflect a shift of this

effort to the previous phase (implementation).
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4.4 PRODUCTIVITY

Productivity in terms of effort/LOC has

improved over time. However, caution must

be exercised, since LOC does not always

represent the true size of the system in

terms of functionality.

The productivity of all four projects in terms of line counts

per staff day is shown in Table 4-7. Productivity has im-

proved slightly; however, caution must be used in using line

counts as a measure of productivity. For example, GOESIM

shows a slightly higher productivity than UARSTELS in terms

of SLOC/staff day. On the other hand, as pointed out in Sec-

tion 4.1, although GOESIM was 35.3 percent greater in size

than UARSTELS, the UARS satellite has about i0 percent

greater complexity than the GOES satellite. Since UARSTELS

cost nearly 20 percent less to develop than GOESIM, and it

had more capabilities supporting the more complex satellite,

real productivity would actually be higher on UARSTELS.

Further research would be required to determine a measure of

productivity that takes into account other factors, such as

software system functionality, and the extent to which the

generic feature of Ada is used in a system.

Table 4-7. Productivity Measures Through System Testing

GRODY GOADA GOESIM

SLOC/staff day 55.1 49.1 59.9

LOC&C/staff day 40.8 38.0 46.4

LOC/staff day 25.2 24.3 30.0

Instructions 9.9 8.7 11.2

per staff day
Declarative 2.6 3.3 4.5

Executable 6.6 5.4 6.7

Components/staff day 0.2 0.2 0.4

UARSTELS

54.4

44.4

30.2

11.2

6.0

5.2

0.36
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4.5 CHANGE CHARACTERISTICS

Error rates have decreased from first- to

third-generation Ada projects. However,
the cause of this decrease is uncertain and

requires further s%udy.

On the average, most changes to any of the projects were

isolated and completed within 1 day. Ninety'two percent of

the change s took less than 1 day to isolate, and 86.4 percent

of the changes took less than 1 day to complete. When the

effort to isolate change is contrasted with the effort to

complete change, no significant difference is found between

the two distributions in terms of projects or phases. Yet,

even though the distributions are similar, the effort to

isolate change does not appear to predetermine the effort to

complete change.

Figure 4-3 shows the profiles of changes per thousand in-

structions, classified according to whether one, two to four,

or five or more components were affected by the change. The

most obvious difference among these projects here is that
....... _ _ =_: :_:_!_i_!_i_i_: : ___ _ i _ _ _ _ _T _ _ =

GRODY had nearly twice as many errors that affected only one

component than did the other three Ada simulation systems.

Since the heavily nested architecture of GRODY resulted in

fewer and larger components per thousand instructions than

on the later three Ada projects, there may have been a tend-

ency in GRODY for errors to affect only one component. A

more likely explanation could be that errors tend to cross

component boundaries and affect more than one component with

the smaller, more numerous components in the more recent

systems.

Table 4-8 shows the error density for the four Ada projects.

The error density for the two dynamics simulators is nearly

twice that of the two telemetry simulators; however, dynamics

simulators are approximately twice the size of telemetry sim-

ulators and are considerably more complex systems. The
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Table 4-8. Error and Change Rates Through System Testing

NO. errors per

I000 instructions

No. changes per
i000 instructions

$RODY GOADA GOESIM UARSTELS

I0.i 10.9 5.4 6.9

23.9 27.9 12.5 16.5

W

m

, =

_m

i

greater error rate thus may be primarily due to the greater

size and complexity of these systems. It is also possible

that the lower error rate on the two telemetry simulator

systems is at least partly due to an increased experience

with the language. As seen in Figure 4-4, the error and

change rates were not substantially different from imple-

mentation to system test phase.

Sources of error are classified by the SEL as originating

from requirements, from functional specifications, from

design, from code, or from previous changes (Figure 4-5).

Errors are primarily coding errors, and the proportion of

errors due to coding is increasing across these projects,

whereas the number of errors due to design is decreasing.

Since design errors are generally more expensive to fix than

coding errors, this probably indicates an improvement in the

development process.
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SECTION 5'- SUMMARY AND RECOMMENDATIONS

As Quimby and Esker (1988) pointed out in their analysis of

the design phase, the transition from developing software

systems in FORTRAN to developing systems in Ada is an evolu-

tionary process. This learning process is more limited when

these projects are being developed in parallel, since the

opportunity to pass lessons learned from one project to

another arises primarily through the movement of personnel.

Since only three of the developers of these Ada simulation

systems had worked on a previous Ada project, the level of

Ada expertise developed in this environment is less than was

expected at the beginning of this study. The development of

several projects entirely in a time-ordered sequence, with

some significant fraction of the development personnel moving

from one completed project to the next, is not likely to

occur.

The design diagram notation introduced by GRODY has been

refined and improved on subsequent projects, and is viewed

as helpful for implementing the design and for documenting

the design in the form of a system description after a proj-

ect is completed. However, developing and maintaining these

diagrams is a labor-intensive activity, and is made more so

by the limited availability of graphics-based personal compu-

ters. CASE tools that support object-oriented design meth-

odologies would help automate this process, and should be

evaluated for use in this environment.

An implicit assumption of Quimby and Esker (1988) was that

the use of a compiled design would be beneficial to the

overall development of an Ada project. However, at present

there is insufficient evidence to support or refute this

assumption. The contribution, if any, of a compiled design

to the development process may depend upon a complex inter-

action of other variables, including the availability of
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design resources (CASE tools), the availability of computer

resources for development (hardware and software), the

life-cycle model used on the project, and so on. Further
_ z z

experience and research will be required to determine the

effectiveness of a compiled design, or the circumstances in

which the use of a c0mp_led design mlght prove effective.

Generally, personnel rated the DEC interactive development

environment very highly for automating a major portion of

their development activities that would otherwise have to be

handled by time-consuming desk work. The usefulness of

these tools was hampered by an overloading of the host com-

puter and limited availability of terminals. Adding more

terminals should be considered only if additional CPU and

disk storage capability is made available to support the

increased load more terminais would impose on the system.

T

Given that the GRODY project was the first Ada simulation

system developed in this environment, greater progress in

understanding how to engineer components to be reusable might

have occurred if GRODY code was not reused. The schedule

pressures associated with the development of production

software systems do not result "in an environment conducive

to the design and development of high-quality, verbatim-

reusable software. Consideration should be given to the

idea of developing verbatim-reusable software independent of

any particular mission, with the idea that all future mis-

sions in which Ada will be used as the application language

could draw on this pool of reusable components.

Although the EUVETELS project was not covered in this study,

preliminary evidence from both this project and UARSTELS

strongly suggests that a combination of factors could

greatly increase the level of verbatim reuse in this
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environment. These factors include the proper use of Ada

generics, the development of reusable requirements specifi-

cations, and the deliberate engineering of software compo-

nents to be reusable on multiple missions.

The manner in which the Ada units and subsystems have been

tested on these projects has undergone considerable change

when compared to FORTRAN projects. On the basis of this

experience, serious consideration should be given to replacing

the standard approach to testing in this environment with a

bottom-up, incremental testing process that eliminates the

distinction between unit and integration testing and instead

concentrates on an iterative approach to developing incre-

mental builds of increasing functionality.
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ACS

AGSS

ASAP

ATR

blank lines

CASE

CDR

CMS

comments

CPU

CSC

CSS

DEC

declaration

EMS

ephemeris

EUVE

EUVEDS IM

EUVETELS

FDAS

FHST

FOV

GOADA

GOES- I

GOESIM

GRO

GRODY

GSFC

GLOSSARY

Ada Compilation System

Attitude Ground Support System

Ada Static Analysis Program

assistant technical representative

Lines that contain only a carriage return

(<CR>)

Computer-Aided Software Engineering

critical design review

Code Management System

Lines that begin with comment token, "--"

central processing unit

Computer Sciences Corporation

coarse Sun sensor

Digital Equipment Corporation

Ada instruction that declares an identifier,

establishes a scope, or places the unit in

some visibility context

Electronic Mail System

time-tagged sequence of positions that
represents the orbit of a satellite

Extreme Ultraviolet Explorer Satellite

EUVE Dynamics Simulator

EUVE Telemetry Simulator

Flight Dynamics Analysis System

fixed-head star tracker

field of view

GOES-I Dynamics Simulator

Geostationary Operational Environmental
Satellite-I

GOES-I Telemetry Simulator

Gamma Ray Observatory

GRO Dynamics Simulator

Goddard Space Flight Center
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instructions

KSLOC

LOC

LOC&C
"LSE

NASA

OBC

P&CA

PDL

SCA
SD

SEL
SLOC

statement

UARS

UARSTELS

sum of Ada declarations and Ada statements

thousands of SLOC
lines of code

lines of code plus comments

Language Sensitive Editor
National Aeronautics and Space Administration

onboard computer

performance and coverage analyzer
program design language

source code analyzer

symbolic debugger
Software Engineering Laboratory
source lines of code
An Ada instruction that defines an action to
be performed. Includes abort statement, block
statement, accept, array statement,
assignment, case statement, code statement,
delay, entry call, exit, goto, if statement,
loop statement, procedure call, raise, return
and select statement.

Upper Atmosphere Research Satellite

UARS Telemetry Simulator
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