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ABSTRACT 

Simulation modeling can be valuable in many areas of management science, but is often costly, 

time-consuming and difficult to do.  This paper describes a new approach to simulation that has the 

potential to be much cheaper, faster and easier to use in many situations.  In this approach, users start with 

a very simple generic model and then progressively replace parts of the model with more specialized 

“molecules” from a systematically organized library of predefined components.  At each point, the system 

lets the user select from lists of possible substitutions, and then either automatically creates a new running 

model or shows the user where further manual changes are needed.   

The paper describes an extensive experiment with using this approach to construct system 

dynamics models of supply chain processes in a large manufacturing company.  The experiment included 

developing a comprehensive catalog of system dynamics molecules analogous to the periodic table in 

chemistry.  The experiment also included developing an innovative “tangible user interface” with which 

users can create simulation models by moving actual physical objects around on a special table  called a 

Sensetable .  The paper concludes with a discussion of the benefits and limitations of this approach and 

how it could be used in other situations. 

INTRODUCTION 

Simulation models have been used with substantial success for decades in many areas of 

management science from factory scheduling to financial forecasting to supply chain planning to market 
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analysis.  One of the most important barriers to wider use of simulation modeling, however, is the difficulty 

of creating simulation models in the first place.   

This paper is about a new approach to simulation modeling that has the potential to substantially 

reduce the time, cost, and effort of creating simulation models.  The approach starts with a systematically 

organized library of predefined model components (or “molecules”) and a set of software tools for 

replacing one molecule with another molecule.  Using this tool kit, users can rapidly construct new 

simulation models by replacing parts (molecules) of models with more specialized versions of the same 

parts.  

While related ideas have been used in some previous simulation systems for years (e.g., Goldberg 

& Robson 1989, Myer 1992, Fleischman and Hemple 1994), we believe that the approach we describe in 

this paper takes the basic ideas significantly further than any previous efforts of which we are aware.  In 

particular, our approach makes it especially easy to rapidly construct simulation models using either a 

conventional graphical user interface (i.e., a mouse and screen) or a novel “tangible user interface” (Ishi 

and Ullmer 1997) where users manipulate actual physical objects on a special table.   

We don’t believe that this (or any other current) approach is a “magic bullet” that makes the 

creation of simulation models instantaneous and effortless, but we do believe that our approach has the 

potential to significantly increase:  (a) the speed with which new simulation models can be created, (b) the 

“correctness” of those models, (c) the number of people who can create simulation models for themselves 

without requiring the assistance of professional programmers and modeling experts, and (d) the use of 

simulation modeling for facilitating conversations and collaboration..  

To develop and validate our approach, we conducted a substantial multi-year investigation using 

the approach to construct system dynamics simulation models (e.g., Forrester 1961, Sterman 2000) of 

corporate supply chains.  This paper summarizes the results of that investigation.  It describes (1) the 

comprehensive library of system dynamics “molecules” we developed, and (2) the software tools we used 

to combine and refine these molecules.  Of particular interest is the fact that our library of system 
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dynamics molecules constitutes a kind of “periodic table” of the elements used in constructing any system 

dynamics model.  In addition, since the library is open-ended, new combinations of these elements can 

always be added as they are identified.  In fact, our process for constructing models actually aids in 

placing new molecules in their proper places in the “periodic table”.  We illustrate the use of this approach 

with a hypothetical usage scenario based upon our extensive analysis of the supply chain of a large 

manufacturing company (further described in Gonçalves 2003; and Gonçalves, Hines, and Sterman 2005).  

The paper concludes with lessons about how this approach can be applied with other kinds of simulation 

and in other situations.   

BACKGROUND 

Before describing our approach in more detail, it is useful to review the fundamental idea of 

reusable components in computer science as well as the difficulties in the current practice of simulation 

modeling. 

Reusable software components 

Computer scientists have noted for decades that different computer programs in the same general 

domain often have many commonalities.  In fact, much of the progress in computer science in the 20th 

century can be seen as successive ways of capturing these commonalities in reusable tools like compilers, 

operating systems, subroutine libraries, and graphics packages.  In this way, different programmers can 

reuse the standard features these tools provide, rather than having to reinvent them each time the features 

are needed. 

While most of these reusable components have been organized in “flat” collections, one 

particularly important approach, object-oriented programming, employs a “deep” approach.  In an 

object-oriented environment such as Smalltalk, C++, or Java, the reusable components are arranged in a 
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specialization hierarchy with increasingly specialized versions of a component automatically “inheriting” 

properties of their more generic “parents”. 

Even though the goal of creating simulation models was historically important in the development 

of some of the first object-oriented programming languages (e.g., Simula and Smalltalk), most modern 

simulation languages still use collections of “flat” components from which programmers can choose using 

icon-based mouse-enabled graphical user-interfaces.   

Difficulties in the current practice of simulation modeling 

Even though simulation models have the potential to be extremely useful, they are often difficult to 

create.  For example, most people who don’t have special training as programmers or modelers can create 

for themselves only the simplest and least flexible form of simulations -- those using spreadsheets.  

Professional modelers or programmers are almost always needed to create other common kinds of 

simulations (e.g., discrete event, system dynamics, and agent-based simulations).  

The difficulty of creating simulation models is also reflected in high costs and error rates.  A small 

professional system dynamics effort, for instance, will typically cost from $25,000 to $100,000; large 

efforts can range into the millions (Dalton 2003, Eberlein 2003).  As for error rates, Panko concludes in his 

survey of studies of spreadsheet models that “every study that has looked for errors has found them in 

significant numbers” (Panko & Halvorson, 1996, p.4).     

Exacerbating the problem of the high cost of model creation is the low opportunity to amortize the 

investment over multiple problems or questions.  In fact, surprisingly few models – even very costly 

models – are ever employed again after the original problem has been solved.  This means that the entire 

financial burden of building a new model must be born by the potential benefit of solving only the current 

problem.   
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One of the important goals of this project is to develop a tool and an approach to creating 

simulation models that has the potential to allow expert and non-experts users alike to create simulation 

models faster, more accurately, and with more reusability than ever before.  

OUR APPROACH 

The key to our approach is making it especially easy for people to refine and combine predefined 

components (or “molecules”) into new models.  The three prerequisites necessary for our approach are:  

(1) a systematically organized catalog of predefined molecules, (2) automatic tools to help users replace 

parts of an existing molecule with more specialized versions of the same parts, and (3) automatic tools for 

storing and cataloging new molecules.   

 A systematically organized catalog of predefined molecules  

In chemistry, a molecule consists of a certain number of more elementary parts, either atoms or 

other molecules, and a set of linkages between these parts (i.e. chemical bonds).  Similarly, in our 

approach to simulation modeling, a “molecule” consists of a number of more elementary parts, which are 

themselves (simpler) molecules, and a set of linkages between these parts.  For example, a simple supply 

chain model might include molecules for planning production, manufacturing, assembly, and shipping 

finished goods.  The molecule for production planning might, in turn, include molecules for storing materials 

in a warehouse and placing orders when the warehouse inventory levels reach a certain point 

We require that all individual molecules be “run-able” so technically a molecule is a simulation 

model that can be a component in a larger simulation model.  Because any model can be a component 

in a larger model, it is also true that a model is a molecule.  We will use the term “molecule” when we 

wish to emphasize the building block nature of things, and we will use the term “model” when wish to 

emphasize a usefulness beyond “just” being a component of something larger. 
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Before describing how we systematically organize catalogs of molecules, it is useful to see some 

detailed examples of molecules.  Since we have applied our approach using system dynamics models, we 

will use system dynamics molecules for this purpose.  System dynamics models are basically systems of 

non-linear differential equations.  In the system dynamics graphical notation, a stock (mathematically, an 

integral) is represented as a rectangle, a stylized bathtub.  A flow (i.e. a partial derivative with respect to 

time) is represented as a double arrow, a stylized pipe.  A policy (decision rule) controlling a flow is 

represented as a stylized “valve” (often depicted as a simple hour-glass shape) on a pipe, and sub-policies 

are represented as labels connected by information links depicted as skinny, curved arrows (“telephone 

wires”).  All flows are conserved, that is every flow comes from one stock and goes into another.  When 

the stock in question is beyond the scope of a model, a cloud – rather than a rectangle – is used.  Figure 1 

illustrates the symbols.  

Stock
policy

sub-
policy 1

sub-
policy 2

information
Input 1

information
Input 2

 

Figure 1:  Symbols Used in System Dynamics Stock-and-Flow Diagrams 
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As an example, Figure 2 shows the system dynamics material delay molecule. A material delay 

is a relatively low-level component that is available as a function in most system dynamics simulation 

environments.  Very simply, a Material Delay allows a modeler to create a flow that is a delayed version 

of another flow.   

 

Figure 2:   System Dynamics Material Delay Molecule  

Mathematically, a material delay is a first order linear, non-homogeneous, fixed co-efficient 

differential equation.  It is defined by the following equations. 

t t t

t
t

d
Stock inflow outflow

dt
Stock

outflow
timeConstant

= −

=
 

Dynamically, the outflow is an exponentially smoothed and exponentially delayed version of the 

inflow, which comes from elsewhere in the model.  A stock accumulates the difference between the 

inflow and the outflow, ensuring that everything that goes in eventually comes out and nothing more.  As 

an example, a modeler might use a Material Delay to represent the lag in realizing cash from accounts 

receivable.  Dollar sales would be the inflow into the stock  of accounts receivable .  Flowing out of 

accounts receivable (and into the stock of cash) would be “cash flow”, a delayed version of dollar sales 

equal to accounts receivable divided by the average delay (the timeConstant).    
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The idea of molecules is not limited to system dynamics.  For example, an important molecule for 

discrete event modeling might be the common structure that represents a resource (e.g. a forklift) moving 

an entity (e.g. an engine) from one queue (e.g. parts inventory) to another (assembly line). 

Arranging molecules in a specialization hierarchy. 

Having predefined, reusable components can be useful in almost any software development 

endeavor and in particular in the creation of computer simulation models.  The power of our approach, 

however, depends on converting these flat components into deep components that are related to one 

another in a very specific, systematic way.   

In our case all the predefined molecules are arranged in a specialization hierarchy where each 

item is classified as a subtype (a kind of specialization) of one or more other items.  Each item can also, in 

turn, have its own subtypes.  In fact, it is possible to classify any simulation model, regardless of its 

complexity, somewhere within this specialization hierarchy, and all of its component parts can also be 

classified somewhere within the hierarchy, too.  (See Malone et al. (1999) for an extensive description of 

the type of specialization hierarchy we use.) 

For example, Figure 3 shows a UML class diagram of a small subset of the specialization 

hierarchy around the material delay molecule described above.  Readers can find a full description of the 

replacement hierarchy at  www.vensim.com/molecules.html. 
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Figure 3:  Specialization Hierarchy Surrounding the Material Delay 

Note: In a UML class diagram, classes are represented as rectangles whose first line gives the name of 
the class.  A class is connected to its superclass by a line terminating in a triangle (i.e. the triangle marks 
the superclass).  A class that is used in the composition of another class is connected to that class by a line 
terminating in a diamond (i.e. the diamond marks the containing class). 

 

The basic element is the System Dynamics (SD) Molecule.   The basic SD molecule has three 

important subtypes:  Stocks (i.e. accumulations), Flows (which fill or deplete stocks), and Policies, which 

control flows (cf. Forrester 1961, pp. 93 ff.).  To understand the hierarchy in more detail, it’s useful to 

focus on a single chain.  For example:  

 

Figure 4:  A Small “Chain” of the Specialization Hierarchy 

A Stock can have any number of inflows and outflows.  Figure 4 shows that a Bathtub is a 

specialization of a Stock.  In fact, a Bathtub is a Stock that has a single inflow and a single outflow. 

Stock
inflow outflow

 

Figure 5:  The Bathtub Molecule  

The Material Delay (as shown in Figure 2) is a specialization of a Bathtub.  The Material Delay 

uses a specific outflow, namely a Decay Outflow.  The Decay Outflow is itself a molecule, with its own 

place in the hierarchy (see Figure 3, above) and defined mathematically as the expression 

t
t

Stock
outflow

timeConstant
=  

An aging chain is a disaggregation of a (first-order) material delay into an nth-order one, where 

each outflow from a sub-material-delay flows into the next sub-material-delay.  For example , a third-order 
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material delay appears below.  Each of the disaggregated time constants would normally be set to one-

third the original timeConstant. 

Sub-
Stock1

Sub-
Stock2

Sub-
Stock3inflow sub

Flow1
sub

Flow2
outflow

time
Constant1

time
Constant2

time
Constant3

 

Figure 6:  The Aging Chain Molecule  

Finally, a modeler might specialize the aging chain by changing the names and units and by giving 

different values to each of the disaggregated time constants.  In so doing, the modeler might create a 

crude representation of a sequential supply chain. 

Factory Warehouse
manufacturing

manufacturing
CycleTime

starts selling

selling
Time

Assembly
assembling

assembly
Time

 

Figure 7:  A Simple Sequential Supply Chain 

This specialization created by a modeler, is a running model and has its own place in the 

specialization hierarchy (see bottom of Figures 3 and 4). 

One advantage of arranging components in hierarchies like this is the resulting ease with which 

users can find the components they need, even in very large collections of components.   A user who 

understands the specialization hierarchy will know, for example, that an aging chain must be near the 

material delay and the material delay must be near the bathtub.   Another—even more important—

advantage of a hierarchy is that it simplifies the creation of new models by allowing one to build up a more 

specialized (often larger) model by replacing elements in a less specialized (often smaller) one.  
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Modeling by replacement 

Readers familiar with the notions of inheritance in object-oriented programming will immediately 

see the similarities between these concepts and the concept of specialization as we are using it here.  Our 

use of specialization, however, differs in two important ways from the way that inheritance is typically 

used in most object-oriented programming languages.  First, the items that are specialized in typical object-

oriented programming are often “objects” not “actions.”   In many simulation models, however, the items 

of primary interest are the actions (“verbs”) whose effects are being simulated, not the objects (“nouns”) 

upon which those actions operate.  Our specialization hierarchies inherit down a hierarchy of “verbs” as 

well as “nouns”, and this provides substantial power and flexibility for creating simulation models.  (See 

Malone et al. (1999) and Lee & Wyner (2003) for extensive discussions of this issue.)   

In addition, our approach requires that the specialization hierarchy of molecules be arranged in 

such a way that replacing a molecule with any of its specializations still results in a mathematically and 

conceptually valid simulation model1.  For example, in a system dynamics model, you can always replace a 

bathtub with an aging chain and still have a valid model.  In other words, the specialization hierarchy 

must have the following formal property (see, for example, Liskov and Wing, 1994; Lalond and Pugh 

1991):   

Substitution property:  If S is a mathematically valid molecule whose parts are the 
molecules Mi (for i = 1…n), and Mi’ is a specialization of Mi, then replacing Mi with Mi’ 
in S results in a molecule S’ which is also a mathematically valid molecule. 

 

When this property holds users can refine subparts of a model and have the new subparts automatically 

substituted into the overall model.  Naturally, the user must still choose a specialization that is an 

appropriate representation of the environment being modeled.  While our approach cannot guarantee that 

users will choose appropriately, the list of specializations provides a framework which allows users to 

compare the resulting models with the environment.  The challenge for inexperienced modelers shifts from 

“how do I model this decision?” to “Which specialization is closest to this decision?”    
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Once the molecules have been arranged in a systematic specialization hierarchy as just described, 

this automatic refinement is straightforward.  Users can select any element of a model (e.g., by clicking on 

it), and immediately see all the possible specializations of this element.  Then, if the user selects one of 

these specializations and invokes the “replace with specialization” action, the system automatically 

substitutes the specialized version of the element in place of the original version.   For example, a financial 

model might represent accounts payable as a material delay.  A click would replace the material delay 

with an aging chain, in order to separate payable accounts into “buckets” of different ages. 

In many cases, the system can automatically make all the necessary connections so that the new 

model is a completely valid simulation model.  In the example immediately above, the inflow to the old 

material delay would be the inflow to the new aging chain.  And any component that used the outflow 

from the original material delay would receive instead the outflow from the new aging chain, while 

components that depended on information about the single stock of receivables in the old formulation, 

would automatically now get information on the sum of the buckets in the aging chain.  When the system 

cannot itself make the necessary connections, however, it can at least automatically call the user’s 

attention to the places where further actions are needed to make the model a mathematically valid one.  

For example when replacing a policy with a goal-gap, there may be more than one candidate for the goal.  

In this case, as discussed below, the system will create a “reaction object” (a sort of place-holder), which 

the user can easily connect to one of the valid alternatives in the model. Once again, the user must choose 

the appropriate goal from the set of valid alternatives.  While there is little doubt that modeling experience 

will help in the choice, the list of alternatives allows users to easily compare the choices.  

This process of replacing parts of a model with more specialized versions of the same parts can, 

of course, be repeated many times in different parts of the same model.  It is often desirable, for instance, 

to make a substitution in one part of an overall model and then make further substitutions inside the 

subparts (i.e. “sub-molecules”) of the molecule that has just been added.  In this way, users can create 

arbitrarily complex models simply by making repeated substitutions in a single starting model.  At each step 
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along the way, they have a valid model, and all they ever have to do is select from the alternatives that are 

automatically presented to them by the system.  They never have to write a single line of textual 

specification (“programming”) as they would in almost all other simulation environments today.  

Library expansion as a byproduct of modeling   

Replacement hierarchies can be formed so that modeling by replacement creates, as a byproduct, 

an expanding library of molecules available for future modeling efforts.  All that is required is a natural 

extension of the substitution property .  If we view the tree of all specializations of a molecule as a set, 

then the extension is simply to ensure that the set of specializations is closed under the operation of 

replacement. 

Substitution property with closure:  If S is a mathematically valid molecule whose parts are the 
molecules Mi (for i = 1…n), and Mi’ is a specialization of Mi, then replacing Mi with Mi’ in S 
results in a molecule S’ which is also a mathematically valid molecule and which is a 
specialization of S. 

 

In other words, the new molecule S’ can be immediately “shelved” under its generalization, the old 

molecule S.  This cataloging and storage function is easily automated. 

Say we change the inventory model of Figure 7 by substituting a specialization of the outflow.  We 

immediately create a specialization of the original simple inventory model.  The specialization is located 

right “beneath” the original inventory model.  If we have a larger industry model of which the original 

inventory model was a component, we can now replace the original inventory model with its new 

specialization.  This will create a new specialization of our industry model, which, in turn, could replace the 

old industry model in a yet larger model of an economy.   

The use of deep components with the closed substitution property creates a rapid and less-error 

prone process of model creation that continually produces new, properly catalogued specializations of prior 

molecules, and which ultimately results in the model itself also becoming part of the specialization 

hierarchy, properly catalogued and available for future use.  For many common simulation approaches 
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(including system dynamics), we believe it is possible to construct “complete” taxonomies from which any 

possible mathematically valid model can be constructed by making successive replacements in the way 

just described.  The approach we have described can still speed and simplify some (often, most) of the 

model creation task, even when such a complete taxonomy cannot be constructed. 

IMPLEMENTING THE APPROACH 

To develop and test this approach, we applied it to system dynamics simulation models of supply 

chains.  We also used a new generation of tangible user interface (Patten et al 2001) which we describe 

briefly below.  The supply chain domain was an obvious choice.  First, the manufacturing company with 

which we worked closely in this project is known for its supply chain expertise, and our closest associates 

at this company included people with significant knowledge of the supply chain and wide ranging contacts 

within the supply chain.  Second, the focus on supply chains permitted us to apply our ideas in an area 

where the need for better alignment and integration is widely recognized by both managers and 

academics.  

An important goal of our project was to develop simulation environments that could be easily used, 

not just with traditional graphical user interfaces, but also with a new generation of “tangible user 

interfaces” (Ishii and Ullmer 1999).  In general, tangible user interfaces move beyond pointing to words 

and pictures on computer screens and, instead, let users see and manipulate three-dimensional physical 

objects in the real world.  Such interfaces can have a number – sometimes a large number – of these 

three-dimensional physical objects.  Consequently, tangible user interfaces seem particularly attractive for 

the kind of collaborative model-building that may prove useful in domains such as supply chains. 

We chose to use system dynamics models in this project for four reasons.  First, system dynamics 

possesses just two primitive components – stocks and flows – so it seemed likely that the process of 

replacement would usually work in a system dynamics model.  Second, the system dynamics approach to 

simulation is as mature as any simulation approach and a number of common structures are already 
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recognized within the field.  These common formulations make a good start on a comprehensive set of 

molecules.  Further, system dynamics is particularly well suited to the central challenge facing people who 

manage and study supply chains, that of understanding and improving the performance of a system 

considered as a whole.  Finally, the notion of collaborative model building is already well established within 

the system dynamics field (e.g. Vennix et al 1997).  

The particular tangible user interface developed in this project, known as the Sensetable, allows 

users to move special physical objects (called “pucks”) around on a specia l table that senses the location 

of the pucks, while computer-generated colors, words, and pictures are projected from above onto the 

pucks and table (Figure 8).  While our approach to developing simulation models does not depend on using 

such a tangible user interface, we believe our approach is especially well-suited to taking advantage of this 

new generation of computer user interface.   

  

Figure 8:  The tangible user interface  
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In order to apply our approach here, we needed to develop the three key elements of our 

approach described in the previous section:  a systematically organized library of molecules, a way of 

replacing parts of molecules, and a way of automatically cataloguing new molecules into the 

library.   

A systematically organized library of predefined molecules 

To develop the library of molecules for system dynamics models, we started with an earlier 

hierarchy of 50 common components of system dynamics models developed by Hines (Eberlein, Hines 

(1996), Hines (1996)).  This earlier hierarchy, however, did not strictly enforce the substitution properties 

described above, so our first step was to reorganize the molecules into a specialization hierarchy with the 

property of substitution with closure. At the “top” of our new replacement hierarchy we put three basic 

types of molecules Stocks, Flows, and Policies (see Figure 3).  Stocks are accumulations of physical 

things or information.  Flows carry physical things or information into and out of stocks.  And Policies are 

the decision rules which control the Flows  

A new hierarchy reveals new molecules 

With these three fundamental categories, we turned to categorizing the 50 original molecules and 

discovered that the pre-existing structure had some significant leaps in degree of abstraction.  For 

instance, the Stock Protected By Stock molecule differed from a Stock  molecule by defining an outflow 

that was kept below a maximum value in order to ensure that the flow would not take the stock below 

zero.  The maximum value for the flow was calculated as a user-defined function of the stock:  

( )*t t tOutflow f Stock IndicatedOutflow= .  The function f( ) equals 1 as long as the stock is above a critical 

value (the “Desired Stock”) so that, when unconstrained, the outflow is equal to the indicated outflow. 

Below the critical value, the function goes to zero as the stock goes to zero.  In the new hierarchy, the 

direct connection between Stock  and its child would have meant that this particular outflow type would 

descend directly from an undifferentiated flow.  But a number of other kinds of flows – less general than 
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an undifferentiated flow, but more general than this particular flow – could be conceptualized as 

intervening:  Flowà outflow à Outflow Below Maximumà Outflow Protected By Stock .   

As illustrated in Figure 9, the new structure “opens up” the hierarchy so that other molecules can 

be inserted in their rightful place by asking the question:  How else do system dynamics modelers 

represent outflows that are below a maximum?  A pre-existing molecule, Outflow Protected By Flow 

easily fit, and it was moved from its prior parent, Decay.  We realized another formulation – 

DrainToZero2 which drains a stock until it is zero and then stops draining – was also widely used, even 

though it had escaped notice during the earlier attempt at hierarchy building.  This was one way in which 

the new hierarchy fostered the identification of new molecules.   

Another way our replacement hierarchy helped us discover missing molecules involved the idea of 

collectively exhaustive specialization (CES).  Because replacement (or subtype) hierarchies are based on 

meaning or concept, one can ask the question whether a set of specializations cover the entire concept 

represented by their common parent.  For example, having the molecule OutflowBelowMaximum raises 

the question whether there should be a molecule for OutflowAboveMinimum.  We believe such a 

molecule would not be found in most practitioners’ mental warehouses of tried-and-true structures.  

Nonetheless a formulation can be easily created and is actually useful in representing, say, a container 

(e.g. a warehouse) of fixed volume.  When the container is full, the outflow has to be at least equal to the 

inflow.  CES, in this case, led to the creation of a “new” molecule, one that was not widely recognized 

before this work.  
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Figure 9: Outflow Protected By Stock and a portion of the new taxonomy 

As we applied these processes of filling-in-the-chain and looking for CES, the original set of 50 

molecules, grew to over 200.  By systematically organizing molecule types into a replacement hierarchy 

we created knowledge about the range of possible elements in a simulation model.  In this sense, 

therefore, our approach is similar to the periodic table of the elements in chemistry which highlighted the 

potential existence of new elements even before they were discovered.   

Obviously 200 molecules would overwhelm a flat-component, icon-based architecture.  

Interestingly, the same taxonomic system that allowed us to expand the number of molecules also keeps 

them ordered and available to anyone familiar with the taxonomy.  In this use, the taxonomy is something 

like the Dewey decimal system.  If you know the kind of molecule  you need, you can go to the proper 

shelf to find it.  And, if the molecule is missing, you know that specifying it will be a contribution to the 

field.   

Modeling by replacement 

The hierarchy of system dynamics molecules was stored in a systematically organized on-line 

knowledge base called the “Process Handbook” (see Malone et al, 1999; Malone, Crowston, Herman, 

2003) which already included extensive facilities for manipulating and viewing textual and graphical 

descriptions of processes arranged in specia lization hierarchies and a pre-existing library of over 5000 

business activities and processes.  The Process Handbook also already included capabilities for replacing 

an element in a business process with one of its specializations by simply selecting from a menu of the 

possible alternatives.  As part of this project, we augmented these existing capabilities of the Process 

Handbook with additional capabilities to store and manipulate mathematical equations and to display 

system dynamics models using stock-and-flow symbols. 

In addition, the Process Handbook can store substantial information about each of the alternative 

specializations of an item.  Thus, the handbook can prompt users who don’t immediately know which 
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choice they want to make for a given replacement.  We extended this capability to store molecule -relevant 

information – such as units as well as information about how a molecule can replace a parent.  For 

example, when replacing an original bathtub (Figure 5) with an aging chain (Figure 6), the handbook 

“knows” that the inflow to the original bathtub should become the inflow to the aging chain and that the 

aging chain’s outflow should replace the outflow of the original bathtub.  The handbook also knows to 

propagate the physical units (e.g. ‘barrels of wine’) as well as the time unit (e.g. ‘Months’) from the 

original bathtub to the new aging chain. 

In many cases, as soon as a user selects a replacement, the system automatically makes all the 

necessary connections so that the resulting model is conceptually valid and completely functional.  In other 

cases, the system makes most of the necessary connections and substitutions, but additional user action is 

required to make a completely functional model.  In these cases, the system creates and displays one or 

more of what we call “REAction objects” (short for “Required Editorial Action objects”).  For example, 

when a modeler replaces a Stock , representing an inventory, with a Monitored Stock  (i.e. one with a goal 

attached), information concerning the gap between the stock and its goal could go to the downstream 

supplier, the upstream pricer, or both.   The REAction object focuses the modeler’s attention on that 

choice.  

As part of this project, we implemented all the capabilities we’ve just described for tangible user 

interfaces (TUI’s) (Patten et al 2001) as well as graphical user interfaces (GUI’s).  In TUI’s, for 

instance, instead of showing menus of alternative replacements on a screen and letting users make 

selections with a mouse, the menus are projected onto the special table, and users make selections by 

moving a special “puck” on the table.   

Library expansion as a byproduct of modeling   

As one molecule is replaced by another, a series of specializations are made.  Each new 

specialization is itself a molecule.  Because the molecule resulted from a specialization, the system has the 
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information of where to place the molecule in the hierarchy at the time the molecule is created.  Our 

system automatically places every new molecule into its proper place in the hierarchy.   

SCENARIO OF USE 

To help visualize the usefulness of this approach, imagine the following scenario, based upon our 

analyses of actual supply chain issues in the large manufacturing company we studied.  Since our system 

is not yet robust enough for daily use in remote sites, the scenario described here is a hypothetical 

description of how a system like ours could, in the future, be used in practice.  The specific  characters and 

events are fictional. 

The scenario involves three people from a semiconductor manufacturing company: Manny, the 

manufacturing manager; Polly, the planner; and Warren, the warehouse manager – three people whose 

collaboration is central to performance, but who seldom find a time or setting conducive to that 

collaboration. Earlier Manny had confronted Polly with a disturbing pattern of dramatic oscillations in plant 

utilization – back and forth from very heavy to very light.  Polly responded by saying she was reacting to 

erratic requests from Warren in the warehouse.  Warren, reached by telephone, reported that he 

frequently had to scramble because of the unpredictable, stop-and-go nature of deliveries from Assembly.   

The three managers decide to meet in the “war room”, a converted conference room that is the 

home of a system similar to the one we have developed.  The most visible part of the system is the 

equipment for the Tangible User Interface (TUI): a medium sized table with built in sensor technology, an 

LCD projector mounted from the ceiling projecting onto the table, and a box of small disks (about 1.5 

inches in diameter), called “pucks”.   

Polly begins by putting a puck down on the table to represent the beginning of a model of the 

company’s supply chain.  The system projects onto the table several possible specializations of this generic 

element, and Polly picks a Bathtub (see Figure 5 above).  The symbol for a bathtub is then projected on 

the puck.  Next Polly says that the stock represents all of the stock in the company from manufacturing 
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through assembly and including the warehouse.  She specifies the units, by typing “chips” into a keyboard.  

The system then asks her what units she wants to use to measure time.  She chooses “weeks”, and the 

system automatically sets the units on the inflow and outflow to be “chips per week”.   Polly then turns the 

knob on top of the puck to set the initial value of the chips in the system to 15 million – her guess about the 

total product in the system.  Then she takes a new puck from the box, puts it on the inflow valve, and turns 

the knob to represent an inflow of 900,000 units per week, saying “that’s about what I’m starting right 

now”.  Next Warren takes another puck from the box, sets it on the outflow, and dials in 1 million chips 

per week, explaining that that was about the current rate of shipments. 

Now, Manny says he would prefer to see his own manufacturing plant separated from the 

assembly plant and from the warehouse, so he replaces the Bathtub with an Aging Chain, one of the 

specializations of Bathtub, though not a direct one (see Figure 6 and Figure 4 ).  To do this, he takes a 

special puck—used for doing replacements—and puts it on the Bathtub.  In response, the system projects 

on the table a list of potential specializations of Bathtub and Manny moves the special puck to the one 

called Aging Chain and types in new labels, Manufacturing, Assembly and Warehouse (see also Figure 7).  

  

Figure 10:  First three actions in scenario 
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Behind the scenes, the system automatically generates a new model at each step, simulates it, and 

projects the results on the table. After the last step above, for instance, the simulation engine has the 

following model, and the table shows a diagram something like the one in Figure 11: 
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Note that the system automatically calculates the initial values of the new Levels.  It sets the 

value of the inflow to be the same as the inflow to the original Bathtub.  Finally, the system also 

automatically propagates the units through the more complicated structure.   

 

 

Figure 11:  Simulating model after first three replacements 
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Polly says that she doesn’t actually keep starts constant at 900,000, but instead is continually 

smoothing production requests coming from upstream.  Using the pucks, the SMOOTH molecule and a 

few quick gestures, she alters the diagram accordingly (Figure 12). 

 

Figure 12:  The production manager smooths production requests 

The warehouse manager says that he wouldn’t allow the warehouse inventory to fall as it does in 

Figure 11.  Instead, he would request that production be increased to eliminate the shortfall between the 

desired and the actual position of the warehouse.  While the warehouse managers, using a goal-gap 

molecule (see Figure 3), makes the required substitutions; Polly observes that the warehouse request is 

one component of total requested production, explaining that the other component, information on 

shipments, represents production required to replace what is being sold.  As the warehouse manager 

finishes his modification, Polly put in hers. 
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Figure 13:  Additional production is requested to correct a warehouse shortfall. 

Eventually the three managers arrive at a model that oscillates and, in so doing, realize that their 

well-meaning policies for factory starts and warehouse control, although quite reasonable in themselves, 

combine with the factory cycle time to produce cyclical ups and downs in all inventories as well as in all 

flows – starts, manufacturing, assembling, and sales.  Interestingly, Polly’s well-meaning attempt to 

smooth production actually increases system-wide instability. 

Based on this new shared understanding, the three managers continue using the technology to 

design policies that not only work well in isolation, but also work well together.  When the new policies 

are implemented, the supply chain operates more smoothly with less waste, less disruption, and not-

incidentally less wear and tear on the managers involved.  The managers know that the future will bring 

changes and, eventually, the need for further redesign.  But, because their model was automatically stored 

as a molecule in its proper place within the hierarchy, any subsequent redesign will pick up where the 

three managers previously left off. 
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DISCUSSION 

Firm conclusions concerning the benefits and drawbacks of this approach must await more 

extensive testing.  Nonetheless, our anecdotal experience of using this approach with the company we 

studied is highly suggestive of both the benefits and limitations of this approach.   

Benefits 

Speed of model construction.  The most obvious benefit of this approach is that models can be 

created more rapidly even for a professional modeler.  With predefined components available (and 

locatable), modelers do not need to create from scratch the standard formulations they want to use.  Our 

rough estimates are that 80-90% of most professionally-built system dynamics models are composed of 

standard formulations.  Currently, modelers have to create each formulation anew every time they use it.  

Being relieved of this mindless repetition can itself be a time saver.  In addition, typographical errors often 

complicate the process of recreating a standard formulation from scratch.  Using guaranteed typo-free 

pre-built molecules, eliminates the considerable time even very good modelers spend tracking down the 

sources of odd behavior generated by such errors.  Further, because the system suggests replacements, a 

modeler who previously was unaware of the existence of a useful molecule will have it automatically 

suggested to him – saving the time that would otherwise be spent needlessly “reinventing the wheel”.   

Conversation-oriented modeling.  Conversation normally proceeds much faster than traditional 

modeling.  The increase in modeling speed from using our system appears to be about the same order of 

magnitude as that by which conversation normally outpaces modeling.  And in fact, in demonstrations with 

our sponsors, the modeling seemed to easily keep pace with the conversation around the system.  The 

approach described here promises to allow modeling to be used within a group conversation.  We suspect 

that this combination may alter the nature of managerial conversations, by adding the equivalent of a flip 

chart that can “talk back” via the magic of simulation.  
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Engaging people .  We have found that the TUI seems to have a remarkable effect on many 

people to whom we show the system.  They are engaged, drawn into it.  This engagement effect 

enhances the probability that this system can change the nature of conversations and collaboration in 

organizations.  

Confidence.  Managers who have seen our system rarely ask about the validity of the model 

being constructed, perhaps because they are there while the model is built.  Since they know what is in the 

model, they don’t wonder if the simulated behavior is due to some hidden formulation.  As importantly, 

building models from pre-existing (and previously vetted) molecules reduces the fear that model behavior 

arises from idiosyncratic (or erroneous) formulations of a particular modeler.  

Speed of learning.  It currently takes years for a would-be system dynamics modeler to become 

truly proficient.  One reason for this is that up until now, modelers have had to construct their own mental 

warehouse of robust molecules.  Our system externalizes these molecules and makes them available 

through easy navigation.  It seems likely that a result may be that beginners will find themselves becoming 

better modelers sooner.  Indeed, one of us (Hines) taught an MBA course in which the early, primitive 

hierarchy of molecules was introduced to students.  The midterm exam required students to create a 

model of a causal diagram within an hour and a half – a task that even advanced doctoral students might 

find difficult.  In this case, however, every student completed the task successfully. 

Relaxing the Skill Requirements.  Quite apart from the possibility of shortening the time to 

become an expert modeler is the possibility that this approach will enable non-experts to create models 

without hiring a professional.  With predefined molecules, an intelligent interface providing options for the 

modeler, and a process (modeling by replacement) that guarantees a well-formed model; it’s possible that 

building good models will require less skill.  Of course, our approach only helps with some of the skills 

required of a modeler.  For example, a system dynamics modeler also needs to be able to conceptualize 

the growing model in terms of feedback loops. Nonetheless it seems almost certain that the approach 

described here will lower to some extent the hurdle to modeling.   
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The Cost of Modeling.  In a prior section we noted that creating even simple system dynamics 

models can cost from $25,000 to $100,000, and large calibrated models can cost an order of magnitude 

more.  Speeding the modeling process promises to reduce these costs (though the time spent modeling 

may amount to only 25% of the total consultant time).   

A more significant savings may come from the automatic storage and cataloging of new 

molecules.  When previous modeling efforts are in effect, “cannibalized for parts” via the automatic 

generation and cataloging of molecules, the economics of simulation modeling can change radically.  As a 

company continues to use the approach described here, the repository of molecules grows, making it more 

likely that the right molecule will be available for the next modeling effort, and thus the cost of modeling 

continues to fall. 

Limitations.   

Many of the limitations we have glimpsed through our early experience with this approach are the 

flip side of its benefits.  For example, the fact that molecules accumulate means that in the early stages of 

using our process a company will have access to only the generic  molecules that come with the system.  It 

is only by using the hierarchy that the hierarchy takes on a richness and specificity to the organization 

using it.  Such an approach, that is most difficult to use at the beginning, may face a hurdle to acceptance. 

Clutter.  Although accumulating molecules adds to the hierarchy’s richness it can also create 

clutter, a problem that we’ve experienced ourselves in our testing and demonstrations of the system.  

Currently, our system automatically adds to the hierarchy a new molecule every time a replacement is 

made.  Some of these molecules are not useful, and need to be pruned.  A solution to this problem is to 

make cataloguing new molecules less automatic .  Perhaps the user should be asked if the molecule merits 

storage.   

Need for facilitation.  A further concern involves the potential need for facilitation.  Although 

we’ve noted that our approach makes modeling easier, it is not clear how much easier things will be.  
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While we hope a user won’t need to be a professional modeler, our use of the tool has always involved 

people with significant experience in all three underlying components: system dynamics, TUI, and Process 

Handbook.  We simply don’t know what minimum level of skill is needed to make productive use of this 

approach.  It is very likely that – at least initially – use of the system will require someone familiar with 

simulation modeling and with the system itself.   

Moleculitis.  When we first began advocating the use of molecules, one leader in the system 

dynamics field worried that it permitted naïve modelers to string together molecule after molecule with no 

real justification. The resulting models would grow ever-larger, while never delivering any benefit to 

anyone.  He termed this condition “moleculitis”.  We have in fact observed a little of this in classes in 

which we have taught the early, primitive set of molecules.  However, the incidence of moleculitis was 

small, and as noted above, most students experienced an unprecedented jump in modeling capabilities.  

The increased ease of building models that this tool provides has raised another similar concern 

among some of our colleagues.  Some have suggested that uninformed modelers will be able to quickly 

produce poor, misleading models.  In fact, similar fears were raised about spreadsheets.  People worried 

that spreadsheets would let inexperienced programmers create lots of incomplete, inaccurate, inconsistent, 

and otherwise flawed models.  To some degree this has turned out to be true, but most people would agree 

that the overall benefits of spreadsheets have far outweighed the harm done by the flawed models that 

people sometimes create.   

Analysis.  In some modeling disciplines, the real benefit of modeling comes, not from the specific 

numerical results of a simulation, but from deeper analyses of the models.  In system dynamics, for 

example, getting benefit usually entails understanding which feedback loops generate which patterns of 

behavior.  Traditionally, analysis proceeds at least as slowly as creating the model itself.  If there were no 

technology to allow analysis to proceed as quickly as a conversation, many of the collaborative and 

conversational advantages of speeding the modeling would be lost.  Although we have not yet combined 

this capability with the other components of the system, our simulation engine today incorporates a new 
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method of model analysis that automatically suggests which feedback loops are most important to a 

particular pattern of model behavior (Arriaga 1981, Forrester 1982, Gonçalves et al 2000).  Our hope is 

that when combined with the other components, this new method will provide a sizeable speedup in model 

analysis as well. 

CONCLUSION 

We have seen in this paper how the approach of constructing simulation models by successively 

replacing parts of predefined molecules with more specialized molecules has the potential to substantially 

improve the cost, quality, and usefulness of simulation modeling.  In our work to date with applying this 

approach, we have developed a hierarchy of increasingly specialized simulation molecules for system 

dynamics models of supply chains.  We believe that this same general approach can also be used with 

other modeling disciplines besides system dynamics, but further work is needed to demonstrate this 

concretely.  In general, we hope that the work reported here will stimulate others to further develop this 

approach and apply it more broadly to many kinds of simulation models. 
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1 The primary organizing principle for the class hierarchy in most object oriented programs is   

implementation inheritance, an efficient strategy for programmers.  In contrast, our molecule hierarchy strictly 

enforces replacement, an efficient strategy for component users.   

2 A DrainToZero is a stock whose outflow is equal to some desiredOutflow as long as that 

outflow will not cause the stock to fall below zero in the next solution interval.  Shipping might be defined 

as the minimum of demand or the outflow that will empty the stock in a single simulated instant (i.e. a 

single “dt”):  min ,
finishedChips

shipping demand
dt

 =   
   

 


