
CONSTRUCTION BY REPLACEMENT:

A NEW APPROACH TO SIMULATION MODELING

James H. Hines, Thomas W. Malone, George Herman, John Quimby,

Mary Murphy-Hoye, James Rice, Paulo Gonçalves, James Patten, and Hiroshi Ishii

Massachusetts Institute of Technology

ABSTRACT

Simulation modeling can be valuable in many areas of management science, but is often costly,

time-consuming and difficult to do. This paper describes a new approach to simulation that has the

potential to be much cheaper, faster and easier to use in many situations. In this approach, users start with

a very simple generic model and then progressively replace parts of the model with more specialized

“molecules” from a systematically organized library of predefined components. At each point, the system

lets the user select from lists of possible substitutions, and then either automatically creates a new running

model or shows the user where further manual changes are needed.

The paper describes an extensive experiment with using this approach to construct system

dynamics models of supply chain processes in a large manufacturing company. The experiment included

developing a comprehensive catalog of system dynamics molecules analogous to the periodic table in

chemistry. The experiment also included developing an innovative “tangible user interface” with which

users can create simulation models by moving actual physical objects around on a special table called a

Sensetable . The paper concludes with a discussion of the benefits and limitations of this approach and

how it could be used in other situations.

INTRODUCTION

Simulation models have been used with substantial success for decades in many areas of

management science from factory scheduling to financial forecasting to supply chain planning to market

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9592006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

analysis. One of the most important barriers to wider use of simulation modeling, however, is the difficulty

of creating simulation models in the first place.

This paper is about a new approach to simulation modeling that has the potential to substantially

reduce the time, cost, and effort of creating simulation models. The approach starts with a systematically

organized library of predefined model components (or “molecules”) and a set of software tools for

replacing one molecule with another molecule. Using this tool kit, users can rapidly construct new

simulation models by replacing parts (molecules) of models with more specialized versions of the same

parts.

While related ideas have been used in some previous simulation systems for years (e.g., Goldberg

& Robson 1989, Myer 1992, Fleischman and Hemple 1994), we believe that the approach we describe in

this paper takes the basic ideas significantly further than any previous efforts of which we are aware. In

particular, our approach makes it especially easy to rapidly construct simulation models using either a

conventional graphical user interface (i.e., a mouse and screen) or a novel “tangible user interface” (Ishi

and Ullmer 1997) where users manipulate actual physical objects on a special table.

We don’t believe that this (or any other current) approach is a “magic bullet” that makes the

creation of simulation models instantaneous and effortless, but we do believe that our approach has the

potential to significantly increase: (a) the speed with which new simulation models can be created, (b) the

“correctness” of those models, (c) the number of people who can create simulation models for themselves

without requiring the assistance of professional programmers and modeling experts, and (d) the use of

simulation modeling for facilitating conversations and collaboration..

To develop and validate our approach, we conducted a substantial multi-year investigation using

the approach to construct system dynamics simulation models (e.g., Forrester 1961, Sterman 2000) of

corporate supply chains. This paper summarizes the results of that investigation. It describes (1) the

comprehensive library of system dynamics “molecules” we developed, and (2) the software tools we used

to combine and refine these molecules. Of particular interest is the fact that our library of system

3

dynamics molecules constitutes a kind of “periodic table” of the elements used in constructing any system

dynamics model. In addition, since the library is open-ended, new combinations of these elements can

always be added as they are identified. In fact, our process for constructing models actually aids in

placing new molecules in their proper places in the “periodic table”. We illustrate the use of this approach

with a hypothetical usage scenario based upon our extensive analysis of the supply chain of a large

manufacturing company (further described in Gonçalves 2003; and Gonçalves, Hines, and Sterman 2005).

The paper concludes with lessons about how this approach can be applied with other kinds of simulation

and in other situations.

BACKGROUND

Before describing our approach in more detail, it is useful to review the fundamental idea of

reusable components in computer science as well as the difficulties in the current practice of simulation

modeling.

Reusable software components

Computer scientists have noted for decades that different computer programs in the same general

domain often have many commonalities. In fact, much of the progress in computer science in the 20th

century can be seen as successive ways of capturing these commonalities in reusable tools like compilers,

operating systems, subroutine libraries, and graphics packages. In this way, different programmers can

reuse the standard features these tools provide, rather than having to reinvent them each time the features

are needed.

While most of these reusable components have been organized in “flat” collections, one

particularly important approach, object-oriented programming, employs a “deep” approach. In an

object-oriented environment such as Smalltalk, C++, or Java, the reusable components are arranged in a

4

specialization hierarchy with increasingly specialized versions of a component automatically “inheriting”

properties of their more generic “parents”.

Even though the goal of creating simulation models was historically important in the development

of some of the first object-oriented programming languages (e.g., Simula and Smalltalk), most modern

simulation languages still use collections of “flat” components from which programmers can choose using

icon-based mouse-enabled graphical user-interfaces.

Difficulties in the current practice of simulation modeling

Even though simulation models have the potential to be extremely useful, they are often difficult to

create. For example, most people who don’t have special training as programmers or modelers can create

for themselves only the simplest and least flexible form of simulations -- those using spreadsheets.

Professional modelers or programmers are almost always needed to create other common kinds of

simulations (e.g., discrete event, system dynamics, and agent-based simulations).

The difficulty of creating simulation models is also reflected in high costs and error rates. A small

professional system dynamics effort, for instance, will typically cost from $25,000 to $100,000; large

efforts can range into the millions (Dalton 2003, Eberlein 2003). As for error rates, Panko concludes in his

survey of studies of spreadsheet models that “every study that has looked for errors has found them in

significant numbers” (Panko & Halvorson, 1996, p.4).

Exacerbating the problem of the high cost of model creation is the low opportunity to amortize the

investment over multiple problems or questions. In fact, surprisingly few models – even very costly

models – are ever employed again after the original problem has been solved. This means that the entire

financial burden of building a new model must be born by the potential benefit of solving only the current

problem.

5

One of the important goals of this project is to develop a tool and an approach to creating

simulation models that has the potential to allow expert and non-experts users alike to create simulation

models faster, more accurately, and with more reusability than ever before.

OUR APPROACH

The key to our approach is making it especially easy for people to refine and combine predefined

components (or “molecules”) into new models. The three prerequisites necessary for our approach are:

(1) a systematically organized catalog of predefined molecules, (2) automatic tools to help users replace

parts of an existing molecule with more specialized versions of the same parts, and (3) automatic tools for

storing and cataloging new molecules.

 A systematically organized catalog of predefined molecules

In chemistry, a molecule consists of a certain number of more elementary parts, either atoms or

other molecules, and a set of linkages between these parts (i.e. chemical bonds). Similarly, in our

approach to simulation modeling, a “molecule” consists of a number of more elementary parts, which are

themselves (simpler) molecules, and a set of linkages between these parts. For example, a simple supply

chain model might include molecules for planning production, manufacturing, assembly, and shipping

finished goods. The molecule for production planning might, in turn, include molecules for storing materials

in a warehouse and placing orders when the warehouse inventory levels reach a certain point

We require that all individual molecules be “run-able” so technically a molecule is a simulation

model that can be a component in a larger simulation model. Because any model can be a component

in a larger model, it is also true that a model is a molecule. We will use the term “molecule” when we

wish to emphasize the building block nature of things, and we will use the term “model” when wish to

emphasize a usefulness beyond “just” being a component of something larger.

6

Before describing how we systematically organize catalogs of molecules, it is useful to see some

detailed examples of molecules. Since we have applied our approach using system dynamics models, we

will use system dynamics molecules for this purpose. System dynamics models are basically systems of

non-linear differential equations. In the system dynamics graphical notation, a stock (mathematically, an

integral) is represented as a rectangle, a stylized bathtub. A flow (i.e. a partial derivative with respect to

time) is represented as a double arrow, a stylized pipe. A policy (decision rule) controlling a flow is

represented as a stylized “valve” (often depicted as a simple hour-glass shape) on a pipe, and sub-policies

are represented as labels connected by information links depicted as skinny, curved arrows (“telephone

wires”). All flows are conserved, that is every flow comes from one stock and goes into another. When

the stock in question is beyond the scope of a model, a cloud – rather than a rectangle – is used. Figure 1

illustrates the symbols.

Stock
policy

sub-
policy 1

sub-
policy 2

information
Input 1

information
Input 2

Figure 1: Symbols Used in System Dynamics Stock-and-Flow Diagrams

7

As an example, Figure 2 shows the system dynamics material delay molecule. A material delay

is a relatively low-level component that is available as a function in most system dynamics simulation

environments. Very simply, a Material Delay allows a modeler to create a flow that is a delayed version

of another flow.

Figure 2: System Dynamics Material Delay Molecule

Mathematically, a material delay is a first order linear, non-homogeneous, fixed co-efficient

differential equation. It is defined by the following equations.

t t t

t
t

d
Stock inflow outflow

dt
Stock

outflow
timeConstant

= −

=

Dynamically, the outflow is an exponentially smoothed and exponentially delayed version of the

inflow, which comes from elsewhere in the model. A stock accumulates the difference between the

inflow and the outflow, ensuring that everything that goes in eventually comes out and nothing more. As

an example, a modeler might use a Material Delay to represent the lag in realizing cash from accounts

receivable. Dollar sales would be the inflow into the stock of accounts receivable . Flowing out of

accounts receivable (and into the stock of cash) would be “cash flow”, a delayed version of dollar sales

equal to accounts receivable divided by the average delay (the timeConstant).

8

The idea of molecules is not limited to system dynamics. For example, an important molecule for

discrete event modeling might be the common structure that represents a resource (e.g. a forklift) moving

an entity (e.g. an engine) from one queue (e.g. parts inventory) to another (assembly line).

Arranging molecules in a specialization hierarchy.

Having predefined, reusable components can be useful in almost any software development

endeavor and in particular in the creation of computer simulation models. The power of our approach,

however, depends on converting these flat components into deep components that are related to one

another in a very specific, systematic way.

In our case all the predefined molecules are arranged in a specialization hierarchy where each

item is classified as a subtype (a kind of specialization) of one or more other items. Each item can also, in

turn, have its own subtypes. In fact, it is possible to classify any simulation model, regardless of its

complexity, somewhere within this specialization hierarchy, and all of its component parts can also be

classified somewhere within the hierarchy, too. (See Malone et al. (1999) for an extensive description of

the type of specialization hierarchy we use.)

For example, Figure 3 shows a UML class diagram of a small subset of the specialization

hierarchy around the material delay molecule described above. Readers can find a full description of the

replacement hierarchy at www.vensim.com/molecules.html.

9

Figure 3: Specialization Hierarchy Surrounding the Material Delay

Note: In a UML class diagram, classes are represented as rectangles whose first line gives the name of
the class. A class is connected to its superclass by a line terminating in a triangle (i.e. the triangle marks
the superclass). A class that is used in the composition of another class is connected to that class by a line
terminating in a diamond (i.e. the diamond marks the containing class).

The basic element is the System Dynamics (SD) Molecule. The basic SD molecule has three

important subtypes: Stocks (i.e. accumulations), Flows (which fill or deplete stocks), and Policies, which

control flows (cf. Forrester 1961, pp. 93 ff.). To understand the hierarchy in more detail, it’s useful to

focus on a single chain. For example:

Figure 4: A Small “Chain” of the Specialization Hierarchy

A Stock can have any number of inflows and outflows. Figure 4 shows that a Bathtub is a

specialization of a Stock. In fact, a Bathtub is a Stock that has a single inflow and a single outflow.

Stock
inflow outflow

Figure 5: The Bathtub Molecule

The Material Delay (as shown in Figure 2) is a specialization of a Bathtub. The Material Delay

uses a specific outflow, namely a Decay Outflow. The Decay Outflow is itself a molecule, with its own

place in the hierarchy (see Figure 3, above) and defined mathematically as the expression

t
t

Stock
outflow

timeConstant
=

An aging chain is a disaggregation of a (first-order) material delay into an nth-order one, where

each outflow from a sub-material-delay flows into the next sub-material-delay. For example , a third-order

10

material delay appears below. Each of the disaggregated time constants would normally be set to one-

third the original timeConstant.

Sub-
Stock1

Sub-
Stock2

Sub-
Stock3inflow sub

Flow1
sub

Flow2
outflow

time
Constant1

time
Constant2

time
Constant3

Figure 6: The Aging Chain Molecule

Finally, a modeler might specialize the aging chain by changing the names and units and by giving

different values to each of the disaggregated time constants. In so doing, the modeler might create a

crude representation of a sequential supply chain.

Factory Warehouse
manufacturing

manufacturing
CycleTime

starts selling

selling
Time

Assembly
assembling

assembly
Time

Figure 7: A Simple Sequential Supply Chain

This specialization created by a modeler, is a running model and has its own place in the

specialization hierarchy (see bottom of Figures 3 and 4).

One advantage of arranging components in hierarchies like this is the resulting ease with which

users can find the components they need, even in very large collections of components. A user who

understands the specialization hierarchy will know, for example, that an aging chain must be near the

material delay and the material delay must be near the bathtub. Another—even more important—

advantage of a hierarchy is that it simplifies the creation of new models by allowing one to build up a more

specialized (often larger) model by replacing elements in a less specialized (often smaller) one.

11

Modeling by replacement

Readers familiar with the notions of inheritance in object-oriented programming will immediately

see the similarities between these concepts and the concept of specialization as we are using it here. Our

use of specialization, however, differs in two important ways from the way that inheritance is typically

used in most object-oriented programming languages. First, the items that are specialized in typical object-

oriented programming are often “objects” not “actions.” In many simulation models, however, the items

of primary interest are the actions (“verbs”) whose effects are being simulated, not the objects (“nouns”)

upon which those actions operate. Our specialization hierarchies inherit down a hierarchy of “verbs” as

well as “nouns”, and this provides substantial power and flexibility for creating simulation models. (See

Malone et al. (1999) and Lee & Wyner (2003) for extensive discussions of this issue.)

In addition, our approach requires that the specialization hierarchy of molecules be arranged in

such a way that replacing a molecule with any of its specializations still results in a mathematically and

conceptually valid simulation model1. For example, in a system dynamics model, you can always replace a

bathtub with an aging chain and still have a valid model. In other words, the specialization hierarchy

must have the following formal property (see, for example, Liskov and Wing, 1994; Lalond and Pugh

1991):

Substitution property: If S is a mathematically valid molecule whose parts are the
molecules Mi (for i = 1…n), and Mi’ is a specialization of Mi, then replacing Mi with Mi’
in S results in a molecule S’ which is also a mathematically valid molecule.

When this property holds users can refine subparts of a model and have the new subparts automatically

substituted into the overall model. Naturally, the user must still choose a specialization that is an

appropriate representation of the environment being modeled. While our approach cannot guarantee that

users will choose appropriately, the list of specializations provides a framework which allows users to

compare the resulting models with the environment. The challenge for inexperienced modelers shifts from

“how do I model this decision?” to “Which specialization is closest to this decision?”

12

Once the molecules have been arranged in a systematic specialization hierarchy as just described,

this automatic refinement is straightforward. Users can select any element of a model (e.g., by clicking on

it), and immediately see all the possible specializations of this element. Then, if the user selects one of

these specializations and invokes the “replace with specialization” action, the system automatically

substitutes the specialized version of the element in place of the original version. For example, a financial

model might represent accounts payable as a material delay. A click would replace the material delay

with an aging chain, in order to separate payable accounts into “buckets” of different ages.

In many cases, the system can automatically make all the necessary connections so that the new

model is a completely valid simulation model. In the example immediately above, the inflow to the old

material delay would be the inflow to the new aging chain. And any component that used the outflow

from the original material delay would receive instead the outflow from the new aging chain, while

components that depended on information about the single stock of receivables in the old formulation,

would automatically now get information on the sum of the buckets in the aging chain. When the system

cannot itself make the necessary connections, however, it can at least automatically call the user’s

attention to the places where further actions are needed to make the model a mathematically valid one.

For example when replacing a policy with a goal-gap, there may be more than one candidate for the goal.

In this case, as discussed below, the system will create a “reaction object” (a sort of place-holder), which

the user can easily connect to one of the valid alternatives in the model. Once again, the user must choose

the appropriate goal from the set of valid alternatives. While there is little doubt that modeling experience

will help in the choice, the list of alternatives allows users to easily compare the choices.

This process of replacing parts of a model with more specialized versions of the same parts can,

of course, be repeated many times in different parts of the same model. It is often desirable, for instance,

to make a substitution in one part of an overall model and then make further substitutions inside the

subparts (i.e. “sub-molecules”) of the molecule that has just been added. In this way, users can create

arbitrarily complex models simply by making repeated substitutions in a single starting model. At each step

13

along the way, they have a valid model, and all they ever have to do is select from the alternatives that are

automatically presented to them by the system. They never have to write a single line of textual

specification (“programming”) as they would in almost all other simulation environments today.

Library expansion as a byproduct of modeling

Replacement hierarchies can be formed so that modeling by replacement creates, as a byproduct,

an expanding library of molecules available for future modeling efforts. All that is required is a natural

extension of the substitution property . If we view the tree of all specializations of a molecule as a set,

then the extension is simply to ensure that the set of specializations is closed under the operation of

replacement.

Substitution property with closure: If S is a mathematically valid molecule whose parts are the
molecules Mi (for i = 1…n), and Mi’ is a specialization of Mi, then replacing Mi with Mi’ in S
results in a molecule S’ which is also a mathematically valid molecule and which is a
specialization of S.

In other words, the new molecule S’ can be immediately “shelved” under its generalization, the old

molecule S. This cataloging and storage function is easily automated.

Say we change the inventory model of Figure 7 by substituting a specialization of the outflow. We

immediately create a specialization of the original simple inventory model. The specialization is located

right “beneath” the original inventory model. If we have a larger industry model of which the original

inventory model was a component, we can now replace the original inventory model with its new

specialization. This will create a new specialization of our industry model, which, in turn, could replace the

old industry model in a yet larger model of an economy.

The use of deep components with the closed substitution property creates a rapid and less-error

prone process of model creation that continually produces new, properly catalogued specializations of prior

molecules, and which ultimately results in the model itself also becoming part of the specialization

hierarchy, properly catalogued and available for future use. For many common simulation approaches

14

(including system dynamics), we believe it is possible to construct “complete” taxonomies from which any

possible mathematically valid model can be constructed by making successive replacements in the way

just described. The approach we have described can still speed and simplify some (often, most) of the

model creation task, even when such a complete taxonomy cannot be constructed.

IMPLEMENTING THE APPROACH

To develop and test this approach, we applied it to system dynamics simulation models of supply

chains. We also used a new generation of tangible user interface (Patten et al 2001) which we describe

briefly below. The supply chain domain was an obvious choice. First, the manufacturing company with

which we worked closely in this project is known for its supply chain expertise, and our closest associates

at this company included people with significant knowledge of the supply chain and wide ranging contacts

within the supply chain. Second, the focus on supply chains permitted us to apply our ideas in an area

where the need for better alignment and integration is widely recognized by both managers and

academics.

An important goal of our project was to develop simulation environments that could be easily used,

not just with traditional graphical user interfaces, but also with a new generation of “tangible user

interfaces” (Ishii and Ullmer 1999). In general, tangible user interfaces move beyond pointing to words

and pictures on computer screens and, instead, let users see and manipulate three-dimensional physical

objects in the real world. Such interfaces can have a number – sometimes a large number – of these

three-dimensional physical objects. Consequently, tangible user interfaces seem particularly attractive for

the kind of collaborative model-building that may prove useful in domains such as supply chains.

We chose to use system dynamics models in this project for four reasons. First, system dynamics

possesses just two primitive components – stocks and flows – so it seemed likely that the process of

replacement would usually work in a system dynamics model. Second, the system dynamics approach to

simulation is as mature as any simulation approach and a number of common structures are already

15

recognized within the field. These common formulations make a good start on a comprehensive set of

molecules. Further, system dynamics is particularly well suited to the central challenge facing people who

manage and study supply chains, that of understanding and improving the performance of a system

considered as a whole. Finally, the notion of collaborative model building is already well established within

the system dynamics field (e.g. Vennix et al 1997).

The particular tangible user interface developed in this project, known as the Sensetable, allows

users to move special physical objects (called “pucks”) around on a specia l table that senses the location

of the pucks, while computer-generated colors, words, and pictures are projected from above onto the

pucks and table (Figure 8). While our approach to developing simulation models does not depend on using

such a tangible user interface, we believe our approach is especially well-suited to taking advantage of this

new generation of computer user interface.

Figure 8: The tangible user interface

16

In order to apply our approach here, we needed to develop the three key elements of our

approach described in the previous section: a systematically organized library of molecules, a way of

replacing parts of molecules, and a way of automatically cataloguing new molecules into the

library.

A systematically organized library of predefined molecules

To develop the library of molecules for system dynamics models, we started with an earlier

hierarchy of 50 common components of system dynamics models developed by Hines (Eberlein, Hines

(1996), Hines (1996)). This earlier hierarchy, however, did not strictly enforce the substitution properties

described above, so our first step was to reorganize the molecules into a specialization hierarchy with the

property of substitution with closure. At the “top” of our new replacement hierarchy we put three basic

types of molecules Stocks, Flows, and Policies (see Figure 3). Stocks are accumulations of physical

things or information. Flows carry physical things or information into and out of stocks. And Policies are

the decision rules which control the Flows

A new hierarchy reveals new molecules

With these three fundamental categories, we turned to categorizing the 50 original molecules and

discovered that the pre-existing structure had some significant leaps in degree of abstraction. For

instance, the Stock Protected By Stock molecule differed from a Stock molecule by defining an outflow

that was kept below a maximum value in order to ensure that the flow would not take the stock below

zero. The maximum value for the flow was calculated as a user-defined function of the stock:

()*t t tOutflow f Stock IndicatedOutflow= . The function f() equals 1 as long as the stock is above a critical

value (the “Desired Stock”) so that, when unconstrained, the outflow is equal to the indicated outflow.

Below the critical value, the function goes to zero as the stock goes to zero. In the new hierarchy, the

direct connection between Stock and its child would have meant that this particular outflow type would

descend directly from an undifferentiated flow. But a number of other kinds of flows – less general than

17

an undifferentiated flow, but more general than this particular flow – could be conceptualized as

intervening: Flowà outflow à Outflow Below Maximumà Outflow Protected By Stock .

As illustrated in Figure 9, the new structure “opens up” the hierarchy so that other molecules can

be inserted in their rightful place by asking the question: How else do system dynamics modelers

represent outflows that are below a maximum? A pre-existing molecule, Outflow Protected By Flow

easily fit, and it was moved from its prior parent, Decay. We realized another formulation –

DrainToZero2 which drains a stock until it is zero and then stops draining – was also widely used, even

though it had escaped notice during the earlier attempt at hierarchy building. This was one way in which

the new hierarchy fostered the identification of new molecules.

Another way our replacement hierarchy helped us discover missing molecules involved the idea of

collectively exhaustive specialization (CES). Because replacement (or subtype) hierarchies are based on

meaning or concept, one can ask the question whether a set of specializations cover the entire concept

represented by their common parent. For example, having the molecule OutflowBelowMaximum raises

the question whether there should be a molecule for OutflowAboveMinimum. We believe such a

molecule would not be found in most practitioners’ mental warehouses of tried-and-true structures.

Nonetheless a formulation can be easily created and is actually useful in representing, say, a container

(e.g. a warehouse) of fixed volume. When the container is full, the outflow has to be at least equal to the

inflow. CES, in this case, led to the creation of a “new” molecule, one that was not widely recognized

before this work.

18

Figure 9: Outflow Protected By Stock and a portion of the new taxonomy

As we applied these processes of filling-in-the-chain and looking for CES, the original set of 50

molecules, grew to over 200. By systematically organizing molecule types into a replacement hierarchy

we created knowledge about the range of possible elements in a simulation model. In this sense,

therefore, our approach is similar to the periodic table of the elements in chemistry which highlighted the

potential existence of new elements even before they were discovered.

Obviously 200 molecules would overwhelm a flat-component, icon-based architecture.

Interestingly, the same taxonomic system that allowed us to expand the number of molecules also keeps

them ordered and available to anyone familiar with the taxonomy. In this use, the taxonomy is something

like the Dewey decimal system. If you know the kind of molecule you need, you can go to the proper

shelf to find it. And, if the molecule is missing, you know that specifying it will be a contribution to the

field.

Modeling by replacement

The hierarchy of system dynamics molecules was stored in a systematically organized on-line

knowledge base called the “Process Handbook” (see Malone et al, 1999; Malone, Crowston, Herman,

2003) which already included extensive facilities for manipulating and viewing textual and graphical

descriptions of processes arranged in specia lization hierarchies and a pre-existing library of over 5000

business activities and processes. The Process Handbook also already included capabilities for replacing

an element in a business process with one of its specializations by simply selecting from a menu of the

possible alternatives. As part of this project, we augmented these existing capabilities of the Process

Handbook with additional capabilities to store and manipulate mathematical equations and to display

system dynamics models using stock-and-flow symbols.

In addition, the Process Handbook can store substantial information about each of the alternative

specializations of an item. Thus, the handbook can prompt users who don’t immediately know which

19

choice they want to make for a given replacement. We extended this capability to store molecule -relevant

information – such as units as well as information about how a molecule can replace a parent. For

example, when replacing an original bathtub (Figure 5) with an aging chain (Figure 6), the handbook

“knows” that the inflow to the original bathtub should become the inflow to the aging chain and that the

aging chain’s outflow should replace the outflow of the original bathtub. The handbook also knows to

propagate the physical units (e.g. ‘barrels of wine’) as well as the time unit (e.g. ‘Months’) from the

original bathtub to the new aging chain.

In many cases, as soon as a user selects a replacement, the system automatically makes all the

necessary connections so that the resulting model is conceptually valid and completely functional. In other

cases, the system makes most of the necessary connections and substitutions, but additional user action is

required to make a completely functional model. In these cases, the system creates and displays one or

more of what we call “REAction objects” (short for “Required Editorial Action objects”). For example,

when a modeler replaces a Stock , representing an inventory, with a Monitored Stock (i.e. one with a goal

attached), information concerning the gap between the stock and its goal could go to the downstream

supplier, the upstream pricer, or both. The REAction object focuses the modeler’s attention on that

choice.

As part of this project, we implemented all the capabilities we’ve just described for tangible user

interfaces (TUI’s) (Patten et al 2001) as well as graphical user interfaces (GUI’s). In TUI’s, for

instance, instead of showing menus of alternative replacements on a screen and letting users make

selections with a mouse, the menus are projected onto the special table, and users make selections by

moving a special “puck” on the table.

Library expansion as a byproduct of modeling

As one molecule is replaced by another, a series of specializations are made. Each new

specialization is itself a molecule. Because the molecule resulted from a specialization, the system has the

20

information of where to place the molecule in the hierarchy at the time the molecule is created. Our

system automatically places every new molecule into its proper place in the hierarchy.

SCENARIO OF USE

To help visualize the usefulness of this approach, imagine the following scenario, based upon our

analyses of actual supply chain issues in the large manufacturing company we studied. Since our system

is not yet robust enough for daily use in remote sites, the scenario described here is a hypothetical

description of how a system like ours could, in the future, be used in practice. The specific characters and

events are fictional.

The scenario involves three people from a semiconductor manufacturing company: Manny, the

manufacturing manager; Polly, the planner; and Warren, the warehouse manager – three people whose

collaboration is central to performance, but who seldom find a time or setting conducive to that

collaboration. Earlier Manny had confronted Polly with a disturbing pattern of dramatic oscillations in plant

utilization – back and forth from very heavy to very light. Polly responded by saying she was reacting to

erratic requests from Warren in the warehouse. Warren, reached by telephone, reported that he

frequently had to scramble because of the unpredictable, stop-and-go nature of deliveries from Assembly.

The three managers decide to meet in the “war room”, a converted conference room that is the

home of a system similar to the one we have developed. The most visible part of the system is the

equipment for the Tangible User Interface (TUI): a medium sized table with built in sensor technology, an

LCD projector mounted from the ceiling projecting onto the table, and a box of small disks (about 1.5

inches in diameter), called “pucks”.

Polly begins by putting a puck down on the table to represent the beginning of a model of the

company’s supply chain. The system projects onto the table several possible specializations of this generic

element, and Polly picks a Bathtub (see Figure 5 above). The symbol for a bathtub is then projected on

the puck. Next Polly says that the stock represents all of the stock in the company from manufacturing

21

through assembly and including the warehouse. She specifies the units, by typing “chips” into a keyboard.

The system then asks her what units she wants to use to measure time. She chooses “weeks”, and the

system automatically sets the units on the inflow and outflow to be “chips per week”. Polly then turns the

knob on top of the puck to set the initial value of the chips in the system to 15 million – her guess about the

total product in the system. Then she takes a new puck from the box, puts it on the inflow valve, and turns

the knob to represent an inflow of 900,000 units per week, saying “that’s about what I’m starting right

now”. Next Warren takes another puck from the box, sets it on the outflow, and dials in 1 million chips

per week, explaining that that was about the current rate of shipments.

Now, Manny says he would prefer to see his own manufacturing plant separated from the

assembly plant and from the warehouse, so he replaces the Bathtub with an Aging Chain, one of the

specializations of Bathtub, though not a direct one (see Figure 6 and Figure 4). To do this, he takes a

special puck—used for doing replacements—and puts it on the Bathtub. In response, the system projects

on the table a list of potential specializations of Bathtub and Manny moves the special puck to the one

called Aging Chain and types in new labels, Manufacturing, Assembly and Warehouse (see also Figure 7).

Figure 10: First three actions in scenario

22

Behind the scenes, the system automatically generates a new model at each step, simulates it, and

projects the results on the table. After the last step above, for instance, the simulation engine has the

following model, and the table shows a diagram something like the one in Figure 11:

900000

t

t
t

t t

t
t

t t

dFactory
starts manufacturing

dt
starts

Factory
manufacturing

manufacturingCycleTime
dAssembly

manufacturing assembling
dt

Assembly
assembling

assemblyTime
dWarehouse

assembling selling
dt

sellin

= −

=

=

= −

=

= −

t
t

Warehouse
g

sellingTime
=

Note that the system automatically calculates the initial values of the new Levels. It sets the

value of the inflow to be the same as the inflow to the original Bathtub. Finally, the system also

automatically propagates the units through the more complicated structure.

Figure 11: Simulating model after first three replacements

23

Polly says that she doesn’t actually keep starts constant at 900,000, but instead is continually

smoothing production requests coming from upstream. Using the pucks, the SMOOTH molecule and a

few quick gestures, she alters the diagram accordingly (Figure 12).

Figure 12: The production manager smooths production requests

The warehouse manager says that he wouldn’t allow the warehouse inventory to fall as it does in

Figure 11. Instead, he would request that production be increased to eliminate the shortfall between the

desired and the actual position of the warehouse. While the warehouse managers, using a goal-gap

molecule (see Figure 3), makes the required substitutions; Polly observes that the warehouse request is

one component of total requested production, explaining that the other component, information on

shipments, represents production required to replace what is being sold. As the warehouse manager

finishes his modification, Polly put in hers.

24

Figure 13: Additional production is requested to correct a warehouse shortfall.

Eventually the three managers arrive at a model that oscillates and, in so doing, realize that their

well-meaning policies for factory starts and warehouse control, although quite reasonable in themselves,

combine with the factory cycle time to produce cyclical ups and downs in all inventories as well as in all

flows – starts, manufacturing, assembling, and sales. Interestingly, Polly’s well-meaning attempt to

smooth production actually increases system-wide instability.

Based on this new shared understanding, the three managers continue using the technology to

design policies that not only work well in isolation, but also work well together. When the new policies

are implemented, the supply chain operates more smoothly with less waste, less disruption, and not-

incidentally less wear and tear on the managers involved. The managers know that the future will bring

changes and, eventually, the need for further redesign. But, because their model was automatically stored

as a molecule in its proper place within the hierarchy, any subsequent redesign will pick up where the

three managers previously left off.

25

DISCUSSION

Firm conclusions concerning the benefits and drawbacks of this approach must await more

extensive testing. Nonetheless, our anecdotal experience of using this approach with the company we

studied is highly suggestive of both the benefits and limitations of this approach.

Benefits

Speed of model construction. The most obvious benefit of this approach is that models can be

created more rapidly even for a professional modeler. With predefined components available (and

locatable), modelers do not need to create from scratch the standard formulations they want to use. Our

rough estimates are that 80-90% of most professionally-built system dynamics models are composed of

standard formulations. Currently, modelers have to create each formulation anew every time they use it.

Being relieved of this mindless repetition can itself be a time saver. In addition, typographical errors often

complicate the process of recreating a standard formulation from scratch. Using guaranteed typo-free

pre-built molecules, eliminates the considerable time even very good modelers spend tracking down the

sources of odd behavior generated by such errors. Further, because the system suggests replacements, a

modeler who previously was unaware of the existence of a useful molecule will have it automatically

suggested to him – saving the time that would otherwise be spent needlessly “reinventing the wheel”.

Conversation-oriented modeling. Conversation normally proceeds much faster than traditional

modeling. The increase in modeling speed from using our system appears to be about the same order of

magnitude as that by which conversation normally outpaces modeling. And in fact, in demonstrations with

our sponsors, the modeling seemed to easily keep pace with the conversation around the system. The

approach described here promises to allow modeling to be used within a group conversation. We suspect

that this combination may alter the nature of managerial conversations, by adding the equivalent of a flip

chart that can “talk back” via the magic of simulation.

26

Engaging people . We have found that the TUI seems to have a remarkable effect on many

people to whom we show the system. They are engaged, drawn into it. This engagement effect

enhances the probability that this system can change the nature of conversations and collaboration in

organizations.

Confidence. Managers who have seen our system rarely ask about the validity of the model

being constructed, perhaps because they are there while the model is built. Since they know what is in the

model, they don’t wonder if the simulated behavior is due to some hidden formulation. As importantly,

building models from pre-existing (and previously vetted) molecules reduces the fear that model behavior

arises from idiosyncratic (or erroneous) formulations of a particular modeler.

Speed of learning. It currently takes years for a would-be system dynamics modeler to become

truly proficient. One reason for this is that up until now, modelers have had to construct their own mental

warehouse of robust molecules. Our system externalizes these molecules and makes them available

through easy navigation. It seems likely that a result may be that beginners will find themselves becoming

better modelers sooner. Indeed, one of us (Hines) taught an MBA course in which the early, primitive

hierarchy of molecules was introduced to students. The midterm exam required students to create a

model of a causal diagram within an hour and a half – a task that even advanced doctoral students might

find difficult. In this case, however, every student completed the task successfully.

Relaxing the Skill Requirements. Quite apart from the possibility of shortening the time to

become an expert modeler is the possibility that this approach will enable non-experts to create models

without hiring a professional. With predefined molecules, an intelligent interface providing options for the

modeler, and a process (modeling by replacement) that guarantees a well-formed model; it’s possible that

building good models will require less skill. Of course, our approach only helps with some of the skills

required of a modeler. For example, a system dynamics modeler also needs to be able to conceptualize

the growing model in terms of feedback loops. Nonetheless it seems almost certain that the approach

described here will lower to some extent the hurdle to modeling.

27

The Cost of Modeling. In a prior section we noted that creating even simple system dynamics

models can cost from $25,000 to $100,000, and large calibrated models can cost an order of magnitude

more. Speeding the modeling process promises to reduce these costs (though the time spent modeling

may amount to only 25% of the total consultant time).

A more significant savings may come from the automatic storage and cataloging of new

molecules. When previous modeling efforts are in effect, “cannibalized for parts” via the automatic

generation and cataloging of molecules, the economics of simulation modeling can change radically. As a

company continues to use the approach described here, the repository of molecules grows, making it more

likely that the right molecule will be available for the next modeling effort, and thus the cost of modeling

continues to fall.

Limitations.

Many of the limitations we have glimpsed through our early experience with this approach are the

flip side of its benefits. For example, the fact that molecules accumulate means that in the early stages of

using our process a company will have access to only the generic molecules that come with the system. It

is only by using the hierarchy that the hierarchy takes on a richness and specificity to the organization

using it. Such an approach, that is most difficult to use at the beginning, may face a hurdle to acceptance.

Clutter. Although accumulating molecules adds to the hierarchy’s richness it can also create

clutter, a problem that we’ve experienced ourselves in our testing and demonstrations of the system.

Currently, our system automatically adds to the hierarchy a new molecule every time a replacement is

made. Some of these molecules are not useful, and need to be pruned. A solution to this problem is to

make cataloguing new molecules less automatic . Perhaps the user should be asked if the molecule merits

storage.

Need for facilitation. A further concern involves the potential need for facilitation. Although

we’ve noted that our approach makes modeling easier, it is not clear how much easier things will be.

28

While we hope a user won’t need to be a professional modeler, our use of the tool has always involved

people with significant experience in all three underlying components: system dynamics, TUI, and Process

Handbook. We simply don’t know what minimum level of skill is needed to make productive use of this

approach. It is very likely that – at least initially – use of the system will require someone familiar with

simulation modeling and with the system itself.

Moleculitis. When we first began advocating the use of molecules, one leader in the system

dynamics field worried that it permitted naïve modelers to string together molecule after molecule with no

real justification. The resulting models would grow ever-larger, while never delivering any benefit to

anyone. He termed this condition “moleculitis”. We have in fact observed a little of this in classes in

which we have taught the early, primitive set of molecules. However, the incidence of moleculitis was

small, and as noted above, most students experienced an unprecedented jump in modeling capabilities.

The increased ease of building models that this tool provides has raised another similar concern

among some of our colleagues. Some have suggested that uninformed modelers will be able to quickly

produce poor, misleading models. In fact, similar fears were raised about spreadsheets. People worried

that spreadsheets would let inexperienced programmers create lots of incomplete, inaccurate, inconsistent,

and otherwise flawed models. To some degree this has turned out to be true, but most people would agree

that the overall benefits of spreadsheets have far outweighed the harm done by the flawed models that

people sometimes create.

Analysis. In some modeling disciplines, the real benefit of modeling comes, not from the specific

numerical results of a simulation, but from deeper analyses of the models. In system dynamics, for

example, getting benefit usually entails understanding which feedback loops generate which patterns of

behavior. Traditionally, analysis proceeds at least as slowly as creating the model itself. If there were no

technology to allow analysis to proceed as quickly as a conversation, many of the collaborative and

conversational advantages of speeding the modeling would be lost. Although we have not yet combined

this capability with the other components of the system, our simulation engine today incorporates a new

29

method of model analysis that automatically suggests which feedback loops are most important to a

particular pattern of model behavior (Arriaga 1981, Forrester 1982, Gonçalves et al 2000). Our hope is

that when combined with the other components, this new method will provide a sizeable speedup in model

analysis as well.

CONCLUSION

We have seen in this paper how the approach of constructing simulation models by successively

replacing parts of predefined molecules with more specialized molecules has the potential to substantially

improve the cost, quality, and usefulness of simulation modeling. In our work to date with applying this

approach, we have developed a hierarchy of increasingly specialized simulation molecules for system

dynamics models of supply chains. We believe that this same general approach can also be used with

other modeling disciplines besides system dynamics, but further work is needed to demonstrate this

concretely. In general, we hope that the work reported here will stimulate others to further develop this

approach and apply it more broadly to many kinds of simulation models.

REFERENCES

Eberlein, R. L., & Hines, J. H. (1996). Molecules for Modelers. Paper presented at the 1996

International System Dynamics Conference, Cambridge, Massachusetts.

Eberlein, Robert. 2003. Ventana Systems. Personal Communication, May 16, 2003.

Arriaga, Jose Ignacio Perez. 1981. Selective Modal Analysis with Applications to Electric

Power Systems. Unpublished doctoral dissertation. Cambridge, MA: MIT.

Dalton, W.J. 2003. PA Consulting. Personal Communication.

Forrester, Jay W. 1961. Industrial Dynamics. Waltham, MA: Pegasus Communications.

30

Forrester, Nathan B. 1982. A Dynamic Synthesis of Basic Macroeconomic Theory:

Implications for Stabilization Policy Analysis. Unpublished doctoral dissertation. Cambridge, MA:

MIT.

Fleishman, E. and W. Hemple (1994). "Design of Object Oriented Simula tions in Smalltalk."

Simulation 49: 239-252.

Gamma, Erick, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns:

Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley Publishing

Company.

Goldberg, Adele and David Robson. 1989. Smalltalk-80: The Language. Reading, MA: Addison-

Wesley Publishing Company.

Gonçalves, Paulo, C. Lertpattarapong, and J. Hines. (2000). “Implementing Formal Model

Analysis,” The 18th International Conference of the System Dynamics Society , Bergen, Norway, July.

Gonçalves, P. (2003). “Demand Bubbles and Phantom Orders in Supply Chains.” Unpublished

Ph.D. Dissertation. MIT Sloan School of Management, Cambridge, MA.

Gonçalves, P., J. Hines, J. Sterman, and C. Lertpattarapong. (2005). “The Impact of Endogenous

Demand on Push-Pull Production Systems.” System Dynamics Review, 21(3):187-216.

Hines, J. H. Molecules of Structure version: Building Blocks for System Dynamics Models 1.4.

Cambridge: Ventana Systems and LeapTec. 1996.

Ishii, H. and Ullmer, B., Tangible Bits: Towards Seamless Interfaces between People, Bits and

Atoms, in Proceedings of Conference on Human Factors in Computing Systems (CHI '97), (Atlanta,

March 1997), ACM Press, pp. 234-241.

Lalond, Wilf R. and John R. Pugh. 1991. “Subclassing ? subtyping ? Is-a”. Journal of Object-

Oriented Programming. 3(5):57-62.

31

Lee, Jintae, & Wyner, G. Defining Specialization for Data Flow Diagrams, Information

Systems 28 (6) (2003): 651-671

Liskov, Barbara and Jeanette Wing, "A Behavioral Notion of Subtyping", ACM Transactions on

Programming Languages and Systems, Vol 16, No 6, November, 1994, pages 1811-1841.

Malone, T. W., Crowston, K. G., & Herman, G. (Eds.) Organizing Business Knowledge: The

MIT Process Handbook. Cambridge, MA: MIT Press, 2003.

Malone, T. W., Crowston, K. G., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., Quimby, J.,

Osborn, C. S., Bernstein, A., Herman, G., Klein, M., & O’Donnell, E. 1999. “Tools for inventing

organizations: Toward a handbook of organizational processes.” Management Science, 45, 3 (March),

425-443.

Meyer, B. 1992. Eiffel: The Language. Prentice Hall, Upper Saddle River, N.J.

Panko, Raymond and Richard Halverson, “Spreadsheets on Trial: A Survey of Research on

Spreadsheet Risks. 1996. Proceedings of the 29th Annual Hawaii International Conference on

System Sciences. 326-335

Patten, J, H. Ishii, G. Pangaro, and J. Hines. 2001. “Sensetable: A Wireless Object Tracking

Platform for Tangible User Interfaces”. Proceedings of Conference on Human Factors in Computing

Systems (CHI '01). Seattle, Washington, USA, March 31 - April 5, 2001. ACM Press. pp.253-260.

Sterman, John. 2000. Business Dynamics. New York: McGraw-Hill

Vennix, J.A.M, D.F, Andersen, and G.P. Richardson. 1997. Introduction: Group Model

Building -- Art and Science. System Dynamics Review 13,2 (summer 1997).

FOOTNOTES

32

1 The primary organizing principle for the class hierarchy in most object oriented programs is

implementation inheritance, an efficient strategy for programmers. In contrast, our molecule hierarchy strictly

enforces replacement, an efficient strategy for component users.

2 A DrainToZero is a stock whose outflow is equal to some desiredOutflow as long as that

outflow will not cause the stock to fall below zero in the next solution interval. Shipping might be defined

as the minimum of demand or the outflow that will empty the stock in a single simulated instant (i.e. a

single “dt”): min ,
finishedChips

shipping demand
dt

 =   

