3,555 research outputs found

    Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis.

    Get PDF
    In Arabidopsis, a large subset of heat responsive genes exhibits diurnal or circadian oscillations. However, to what extent the dimension of time and/or the circadian clock contribute to heat stress responses remains largely unknown. To determine the direct contribution of time of day and/or the clock to differential heat stress responses, we probed wild-type and mutants of the circadian clock genes CCA1, LHY, PRR7, and PRR9 following exposure to heat (37 °C) and moderate cold (10 °C) in the early morning (ZT1) and afternoon (ZT6). Thousands of genes were differentially expressed in response to temperature, time of day, and/or the clock mutation. Approximately 30% more genes were differentially expressed in the afternoon compared to the morning, and heat stress significantly perturbed the transcriptome. Of the DEGs (~3000) specifically responsive to heat stress, ~70% showed time of day (ZT1 or ZT6) occurrence of the transcriptional response. For the DEGs (~1400) that are shared between ZT1 and ZT6, we observed changes to the magnitude of the transcriptional response. In addition, ~2% of all DEGs showed differential responses to temperature stress in the clock mutants. The findings in this study highlight a significant role for time of day in the heat stress responsive transcriptome, and the clock through CCA1 and LHY, appears to have a more profound role than PRR7 and PRR9 in modulating heat stress responses during the day. Our results emphasize the importance of considering the dimension of time in studies on abiotic stress responses in Arabidopsis

    A preliminary checklist of fungi at the Boston Harbor Islands

    Get PDF
    Between December 2012 and May 2017, we conducted a fungal inventory at the Boston Harbor Islands National Recreation Area (BHI) in Massachusetts. We extensively sampled 4 sites (Grape Island, Peddocks Island, Thompson Island, and World's End peninsula) and occasionally visited 4 others for sampling (Calf Island, Great Brewster Island, Slate Island, and Webb Memorial State Park). We made over 900 collections, of which 313 have been identified. The survey yielded 172 species in 123 genera, 62 families, 24 orders, 11 classes, and 2 phyla. We report 4 species as new, but not formally described, in the genera Orbilia, Resupinatus, and Xylaria. Another collection in the genus Lactarius may be new to science, but further morphological and molecular work is needed to confirm this conclusion. Additionally, Orbilia aprilis is a new report for North America, Proliferodiscus earoleucus represents only the second report for the US, and Chrysosporium sulfureum, a common fungus of some cheeses, was discovered on woodlice (Crustacea: Malacostraca: Isopoda: Oniscidea). We discuss our findings in the light of DNA-based identifications using the ITS ribosomal DNA region, including the advantages and disadvantages of this approach, and stress the need for biodiversity studies in urbanized areas during all seasons

    Cryogenic Refractive Indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras with seven optical elements each that include various types of Ohara glass substrates. The successful implementation both panchromatic and thermal lens assembly designs for these cameras requires a fairly accurate (up to 1E-6) knowledge of the temperature and wavelength dependence of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42-1.15 um and temperature range of 110-310 K for the following Ohara glasses: S-LAH55, S-LAH55V, SLAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for the title substrates in the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/d lambda) as a function of wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14, will be presented

    Optical Conductivity of Ferromagnetic Semiconductors

    Full text link
    The dynamical mean field method is used to calculate the frequency and temperature dependent conductivity of dilute magnetic semiconductors. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism

    Cryogenic Refractive Indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras and a Data Handling Unit (DHU) fitted with CCD detectors and associated electronics. Each camera consist of a lens assembly with seven optical elements that include various types of Ohara glass substrates. The successful implementation of a panchromatic and a thermal lens assembly design for these cameras requires a fairly accurate (up to 0.000001 (1e-6)) knowledge of the temperature- and wavelength-dependent of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42-1.15 micrometers and temperature range of 110-300 K for the following Ohara glasses: S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for all these substrates in the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14 reported by Yamamuro et al. [Yamamuro et al., Opt. Eng. 45(8), 083401 (2006)], will be presented

    Sareomycetes: more diverse than meets the eye

    Get PDF
    Since its resurrection, the resinicolous discomycete genus Sarea has been accepted as containing two species, one with black apothecia and pycnidia, and one with orange. We investigate this hypothesis using three ribosomal (nuITS, nuLSU, mtSSU) regions from and morphological examination of 70 specimens collected primarily in Europe and North America. The results of our analyses support separation of the traditional Sarea difformis s.lat. and Sarea resinae s.lat. into two distinct genera, Sarea and Zythia. Sarea as circumscribed is shown to conservatively comprise three phylospecies, with one corresponding to Sarea difformis s.str. and two, morphologically indistinguishable, corresponding to the newly combined Sarea coeloplata. Zythia is provisionally maintained as monotypic, containing only a genetically and morphologically variable Z. resinae. The new genus Atrozythia is erected for the new species A. klamathica. Arthrographis lignicola is placed in this genus on molecular grounds, expanding the concept of Sareomycetes by inclusion of a previously unknown type of asexual morph. Dating analyses using additional marker regions indicate the emergence of the Sareomycetes was roughly concurrent with the diversification of the genus Pinus, suggesting that this group of fungi emerged to exploit the newly-available resinous ecological niche supplied by Pinus or another, extinct group of conifers. Our phylogeographic studies also permitted us to study the introductions of these fungi to areas where they are not native, including Antarctica, Cape Verde, and New Zealand and are consistent with historical hypotheses of introduction

    Temperature-Dependent Refractive Index Measurements of Caf2, Suprasil 3001, and S-FTM16 for the Euclid Near Infrared Spectrometer and Photometer

    Get PDF
    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/d), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS
    • …
    corecore