62 research outputs found
Effect of recombinant human erythropoietin expressions of apoptosis genes in rats following traumatic brain injury
Purpose: To explore the effect of recombinant human erythropoietin (r-HuEPO) on apoptosis in rats after traumatic brain injury.Methods: A total of 48 traumatic brain-injured Sprague Dawley (SD) rats were obtained by improved Feeney’s traumatic brain injury model, and were randomly divided into four groups: normal salinetreated rats (control) and rats treated with r-HuEPO at doses of 1000 U/kg, 3000 U/kg and 5000 U/kg. Brain tissues were collected on the 7th day after trauma surgery. Apoptotic cells, and NF-kappa B (NFĸB)-, c-myc-, and Fas/Fasl-positive cells were identified in brain tissues by immunohistochemical assay.Results: After treatment with r-HuEPO (3000 and 5000 U/kg), expression of NF-κB and Fas/Fasl were significantly decreased (p < 0.05) compared to control rats, especially at the 5000 U/kg dose (p < 0.01). However, for c-myc, no significant difference was observed between r-HuEPO treatment and control groups (p > 0.05). Compared to the 1000 U/kg r-HuEPO group, Fas/Fasl expression levels were significantly lower in the 3000 and 5000 U/kg r-HuEPO groups (p < 0.05). Additionally, expression of NF-κB and Fasl in the 5000 U/kg r-HuEPO group was significantly lower than that in the 3000 U/kg r- HuEPO group (p < 0.05). Moreover, the number of apoptotic cells in the r-HuEPO group (5000 U/kg) was significantly lower than in the control group (p < 0.05).Conclusion: Thus, r-HuEPO may be beneficial for treating traumatic brain injury via inhibition of NFkappa B and Fas/Fasl expressions.Keywords: Recombinant human erythropoietin, NF-kappa B, Traumatic brain injury, Apoptosis, Neuronal damage, Fas/Fasl expressio
Recommended from our members
Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes
Listeria monocytogenes is a Gram-positive human-pathogen bacterium that served as an experimental model for investigating fundamental processes of adaptive immunity and virulence. Recent novel technologies allowed the identification of several hundred non-coding RNAs (ncRNAs) in the Listeria genome and provided insight into an unexpected complex transcriptional machinery. In this review, we discuss ncRNAs that are encoded on the opposite strand of the target gene and are therefore termed antisense RNAs (asRNAs). We highlight mechanistic and functional concepts of asRNAs in L. monocytogenes and put these in context of asRNAs in other bacteria. Understanding asRNAs will further broaden our knowledge of RNA-mediated gene regulation and may provide targets for diagnostic and antimicrobial development
sSgo1, a Major Splice Variant of Sgo1, Functions in Centriole Cohesion Where It Is Regulated by Plk1
SummaryShugoshin 1 (Sgo1) functions as a protector of centromeric cohesion of sister chromatids in higher eukaryotes. Here, we provide evidence for a previously unrecognized role for Sgo1 in centriole cohesion. Sgo1 depletion via RNA interference induces the formation of multiple centrosome-like structures in mitotic cells that result from the separation of paired centrioles. Sgo1+/− mitotic murine embryonic fibroblasts display split centrosomes. Localization study of two major endogenous splice variants of Sgo1 indicates that the smaller variant, sSgo1, is found at the centrosome in interphase and at spindle poles in mitosis. sSgo1 interacts with Plk1 and its spindle pole localization is Plk1 dependent. Centriole splitting induced by Sgo1 depletion or expression of a dominant negative mutant is suppressed by ectopic expression of sSgo1 or by Plk1 knockdown. Our studies strongly suggest that sSgo1 plays an essential role in protecting centriole cohesion, which is partly regulated by Plk1
Detection of very long antisense transcripts by whole transcriptome RNA-Seq analysis of Listeria monocytogenes by semiconductor sequencing technology
The Gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a severe food-borne infection characterised by abortion, septicaemia, or meningoencephalitis. L. monocytogenes causes outbreaks of febrile gastroenteritis and accounts for community-acquired bacterial meningitis in humans. Listeriosis has one of the highest mortality rates (up to 30%) of all food-borne infections. This human pathogenic bacterium is an important model organism for biomedical research to investigate cell-mediated immunity. L. monocytogenes is also one of the best characterised bacterial systems for the molecular analysis of intracellular parasitism. Recently several transcriptomic studies have also made the ubiquitous distributed bacterium as a model to understand mechanisms of gene regulation from the environment to the infected host on the level of mRNA and non-coding RNAs (ncRNAs). We have used semiconductor sequencing technology for RNA-seq to investigate the repertoire of listerial ncRNAs under extra- and intracellular growth conditions. Furthermore, we applied a new bioinformatic analysis pipeline for detection, comparative genomics and structural conservation to identify ncRNAs. With this work, in total, 741 ncRNA locations of potential ncRNA candidates are now known for L. monocytogenes, of which 611 ncRNA candidates were identified by RNA-seq. 441 transcribed ncRNAs have never been described before. Among these, we identified novel long non-coding antisense RNAs with a length of up to 5,400 nt e.g. opposite to genes coding for internalins, methylases or a high-affinity potassium uptake system, namely the kdpABC operon, which were confirmed by qRT-PCR analysis. RNA-seq, comparative genomics and structural conservation of L. monocytogenes ncRNAs illustrate that this human pathogen uses a large number and repertoire of ncRNA including novel long antisense RNAs, which could be important for intracellular survival within the infected eukaryotic host
Ultra deep sequencing of Listeria monocytogenes sRNA transcriptome revealed new antisense RNAs
Listeria monocytogenes, a gram-positive pathogen, and causative agent of listeriosis, has become a widely used model organism for intracellular infections. Recent studies have identified small non-coding RNAs (sRNAs) as important factors for regulating gene expression and pathogenicity of L. monocytogenes. Increased speed and reduced costs of high throughput sequencing (HTS) techniques have made RNA sequencing (RNA-Seq) the state-of-the-art method to study bacterial transcriptomes. We created a large transcriptome dataset of L. monocytogenes containing a total of 21 million reads, using the SOLiD sequencing technology. The dataset contained cDNA sequences generated from L. monocytogenes RNA collected under intracellular and extracellular condition and additionally was size fractioned into three different size ranges from 150 nt. We report here, the identification of nine new sRNAs candidates of L. monocytogenes and a reevaluation of known sRNAs of L. monocytogenes EGD-e. Automatic comparison to known sRNAs revealed a high recovery rate of 55%, which was increased to 90% by manual revision of the data. Moreover, thorough classification of known sRNAs shed further light on their possible biological functions. Interestingly among the newly identified sRNA candidates are antisense RNAs (asRNAs) associated to the housekeeping genes purA, fumC and pgi and potentially their regulation, emphasizing the significance of sRNAs for metabolic adaptation in L. monocytogenes
Control of Domain Structures in Multiferroic Thin Films through Defect Engineering
Domain walls (DWs) have become an essential component in nanodevices based on ferroic thin films. The domain configuration and DW stability, however, are strongly dependent on the boundary conditions of thin films, which make it difficult to create complex ordered patterns of DWs. Here, it is shown that novel domain structures, that are otherwise unfavorable under the natural boundary conditions, can be realized by utilizing engineered nanosized structural defects as building blocks for reconfiguring DW patterns. It is directly observed that an array of charged defects, which are located within a monolayer thickness, can be intentionally introduced by slightly changing substrate temperature during the growth of multiferroic BiFeO3 thin films. These defects are strongly coupled to the domain structures in the pretemperatureâ change portion of the BiFeO3 film and can effectively change the configuration of newly grown domains due to the interaction between the polarization and the defects. Thus, two types of domain patterns are integrated into a single film without breaking the DW periodicity. The potential use of these defects for building complex patterns of conductive DWs is also demonstrated.Engineered structural defects are used as nanosized building blocks for configuring domainâ wall patterns in multiferroic BiFeO3 thin films. By utilizing the interaction between the polarization and the defects, two types of twinning domain structures are integrated into a single film without breaking the domainâ wall periodicity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146435/1/adma201802737-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146435/2/adma201802737_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146435/3/adma201802737.pd
Characterization of ultra-deeply buried middle Triassic Leikoupo marine carbonate petroleum system (!) in the Western Sichuan depression, China
Ultra-deeply buried (>5000 m) marine carbonate reservoirs have gradually become important exploration targets. This research focuses on providing an understanding of the basic elements of the ultra-deeply buried Middle Triassic Leikoupo marine carbonate petroleum system within the Western Sichuan Depression, China. Comprehensive analyses of organic geochemistry, natural gas, and C–H–He–Ne–Ar isotope compositions suggest that the reservoir is charged with compound gases from four source rock units including the Permian Longtan, Middle Triassic Leikoupo, Late Triassic Maantang and Xiaotangzi formations. Approximately a 50-m thick outcrop and 100-m length of drilling cores were examined in detail, and 108 samples were collected from six different exploration wells in order to conduct petrographic and petrophysical analyses. Thin-section and scanning electron microscope (SEM) observations, helium porosity and permeability measurements, mercury injection capillary pressure (MICP) analysis, and wire-line logging (5,500–6,900 m) indicate that the reservoir lithologies include argillaceous algal limestones, dolograinstones, crystalline dolostones, and microbially-derived stromatolitic and thrombolitic dolostones. Reservoir properties exhibit extreme heterogeneity due to different paleogeographic environmental controls and mutual interactions between constructive (e.g., epigenetic paleo-karstification, burial dissolution, structural movement, pressure-solution and dolomitization) and destructive (e.g., physical/chemical compaction, cementation, infilling, recrystallization, and replacement) diagenetic processes. An unconformity-related epigenetic karstification zone was identified in the uppermost fourth member of the Leikoupo Formation, which has developed secondary solution-enhanced pores, vugs, and holes that resulted in higher porosity (1.8–14.2%) and permeability (0.2–7.7 mD). The homogeneity and tightness of the reservoir increases with depth below the unconformity, and it is characterized by primary intergranular and intracrystalline pores, solution pores, fractures, stylolites, and micropores with a lower helium porosity (0.6–4.1%) and permeability (0.003–125.2 mD). Regional seals consist of the Late Triassic Xujiahe Formation, comprised of ~300 m of mudstones that are overlain by ~5,000-m thick of Jurassic to Quaternary continental argillaceous overburden rocks. Effective traps are dominated by a combination of structural-stratigraphic types. Paleo- reservoir crude oil cracking, wet-gases, and dry-gases from three successive hydrocarbon generation processes supplied the sufficient hydrocarbon resources. The homogenization temperatures of the hydrocarbon-associated aqueous fluid inclusions range from 98–130 °C and 130–171 °C, which suggests hydrocarbon charging occurred between 220–170 Ma and 130–90 Ma, respectively. One-dimensional basin evolution models combined with structural geologic and seismic profiles across wells PZ1-XQS1-CK1-XCS1-TS1 show that hydrocarbon migration and entrapment mainly occurred via the unconformity and interconnected fault-fracture networks with migration and charging driven by formation overpressure, abnormal fluid flow pressure, and buoyancy forces during the Indosinian and Yanshanian orogenies, with experiencing additional transformation occurring during the Himalayan orogeny. The predicted estimated reserves reached ~300 × 109 m3. The results provide excellent scientific implications for similar sedimentary basin studies, it is believed that abundant analogous deeply buried marine carbonate hydrocarbon resources yet to be discovered in China and elsewhere worldwide in the near future
A Novel Replication-Competent Vaccinia Vector MVTT Is Superior to MVA for Inducing High Levels of Neutralizing Antibody via Mucosal Vaccination
Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels (∼2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (∼10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination
- …