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Abstract

Listeria monocytogenes, a gram-positive pathogen, and causative agent of listeriosis, has become a widely used model
organism for intracellular infections. Recent studies have identified small non-coding RNAs (sRNAs) as important factors for
regulating gene expression and pathogenicity of L. monocytogenes. Increased speed and reduced costs of high throughput
sequencing (HTS) techniques have made RNA sequencing (RNA-Seq) the state-of-the-art method to study bacterial
transcriptomes. We created a large transcriptome dataset of L. monocytogenes containing a total of 21 million reads, using
the SOLiD sequencing technology. The dataset contained cDNA sequences generated from L. monocytogenes RNA collected
under intracellular and extracellular condition and additionally was size fractioned into three different size ranges from
,40 nt, 40–150 nt and .150 nt. We report here, the identification of nine new sRNAs candidates of L. monocytogenes and a
reevaluation of known sRNAs of L. monocytogenes EGD-e. Automatic comparison to known sRNAs revealed a high recovery
rate of 55%, which was increased to 90% by manual revision of the data. Moreover, thorough classification of known sRNAs
shed further light on their possible biological functions. Interestingly among the newly identified sRNA candidates are
antisense RNAs (asRNAs) associated to the housekeeping genes purA, fumC and pgi and potentially their regulation,
emphasizing the significance of sRNAs for metabolic adaptation in L. monocytogenes.
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Introduction

Listeria monocytogenes is a Gram-positive, facultative intracellular

pathogen, which is responsible for a foodborne infection, listeriosis,

a rare but serious disease. It has become the prime model organism

for intracellular pathogens [1]. Small non coding RNAs (sRNAs)

have been proposed to play an important role in the pathogenicity

of L. monocytogenes and some lead to attenuated infections when

disabled [2,3]. These studies also showed that antisense transcrip-

tion is common in L. monocytogenes [2,3]. Beside short antisense

RNAs (asRNAs), a new type of long antisense RNAs (lasRNAs)

functioning as an mRNA as well as antisense RNA that regulate

adjacent genes at the level of transcription, was proposed [4].

Over the last decade reduced costs for high throughput

sequencing (HTS) technologies facilitate the thorough and unbiased

research of bacterial transcriptomes at an ever increasing rate [5–7].

As a result, identification of small non coding RNAs in all bacterial

species have been reported [8–11]. Large numbers of small non

coding RNAs have been found in both Gram-negative [12,13] and

Gram-positive [14,15] bacteria. In particular L. monocytogenes has

been subject to an extensive number of transcriptome studies using

macro-/microarrays, Illumina GAIIx or Roche GS FLX sequenc-

ing platforms [2–4,16–20]. The SOLiD sequencing platform

used in this study, provides a very high throughput sequencing

method with increased base calling accuracy due to its unique

‘color coded’ di-base sequencing technique [21].

Here we report the thorough reevaluation of the small RNA

transcriptome of L. monocytogenes with increased coverage. A large

HTS transcriptome dataset containing transcriptomic data of L.

monocytogenes grown under intracellular and extracellular conditions

was the basis of this study. The transcriptomic data was generated

using the SOLiD HTS platform and consists of a total of 21

million reads. In this study a newly developed computational

pipeline was used to identify and classify sRNAs. Furthermore, this

computational pipeline leads to the discovery of nine yet unknown

small non coding RNA candidates of L. monocytogenes.

Materials and Methods

Bacterial and cell culture and RNA extraction
The strain of L. monocytogenes EGD-e [22] and the murine

P388D1 macrophages were used for cell infection and RNA

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e83979

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Giessener Elektronische Bibliothek

https://core.ac.uk/display/56351676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


extraction as reported recently for this study [2]. The strain L.

monocytogenes EGD-e used in this study was grown in brain heart

infusion (BHI) broth (VWR) overnight at 37uC with shaking at

180 rpm (Unitron, Infors). Overnight cultures were diluted 1:50 in

20 ml fresh BHI broth using a 100 ml Erlenmeyer flask and were

incubated at the same conditions mentioned above until mid-

exponential phase (OD600 nm 1.0). Bacteria were added to P388D1

murine macrophage cells monolayer at a multiplicity of infection

(MOI) of ten bacteria per eukaryotic cell.

For RNA extraction from extracellularly grown L. monocytogenes,

we used aliquots of 0.5 ml from the same bacterial culture used to

infect P388D1 macrophages. The bacterial cells were treated with

1.0 ml RNA protect (Qiagen) for 5 min and were collected by

centrifugation for 10 min (80006g) and subsequently stored at

280uC until use. RNA extraction from intracellularly grown L.

monocytogenes in macrophages, 4 h post infection, was performed as

described previously [33][23]. Briefly, infected host cells were

lysed using cold mix of 0.1% (wt/vol) sodium dodecyl sulfate,

1.0% (vol/vol) acidic phenol and 19% (vol/vol) ethanol in water.

The bacterial pellets were collected by centrifugation for 3 min

(160006g).

Total RNA was extracted using miRNeasy kit (Qiagen) with

some modifications. The collected pellets were washed with SET

buffer [50 mM NaCl, 5 mM EDTA and 30 mM Tris-HCl

(pH 7.0)]. After centrifugation at 160006g for 3 min pellets were

resuspended in 0.1 ml Tris-HCl (pH 6.5) containing 50 mg/ml

lysozyme (Sigma), 25 U of mutanolysin (Sigma), 40 U of SUPER-

ase (Ambion), 0.2 mg of proteinase K (Ambion) and incubated at

37uC for 30 min at 350 rpm. QIAzol (Qiagen) was added, mixed

gently and incubated for 3 min at room temperature. An

additional incubation at room temperature was done after adding

0.2 volume chloroform followed by centrifugation at 160006g at

4uC for 15 min. The aqueous phase, containing RNA, was

transferred to a new collection tube and 1.5 volumes of 100%

ethanol was added and mixed thoroughly. The probes containing

RNA were transferred into columns supplied with the miRNeasy

Kit (Qiagen) and treated according to the manual including an on-

column DNase digestion (RNase-Free DNase, Qiagen). RNA was

eluted by RNase-free water and stored at 280uC until needed.

The quantity of the isolated total RNA was determined by

absorbance at 260 nm and 280 nm, and the quality was assessed

using Nano-chips for Agilent’s 2100 Bioanalyzer. For detection

and estimation of the small RNA fraction within the isolated total

RNA, a small RNA-chip (Agilent) was used, which visualizes

RNAs with sizes ranging from 20 to 150 nucleotides.

RNA sequencing
6 mg of total RNA of the intracellular and the extracellular

sample was used as starting material. The quality was checked by

Nanodrop and Agilent Pico RNA Chip. Both samples were

prepared in parallel for all three different size ranges from ,40 nt,

40–150 nt and .150 nt.

.150 nt size fractionation library preparation. 2.5 mg of total

RNA of the sample was rRNA depleted using the Ribo Minus

Bacteria Module (Invitrogen Corporation) and purified with the

RiboMinus Concentration Module (Invitrogen Corporation) with

a modified protocol to keep all RNA transcripts ,200 nt. After the

rRNA depletion the samples were checked on the Pico RNA Chip

from Agilent showing remaining rRNA in the sample. However,

due to the small starting amount the rRNA depletion couldn’t be

repeated. Subsequently, the RNA was treated with Tobaco-Acid-

Pyrophosphatase (TAP) from epicenter H for 1.5 h at 37uC and

purified with the RiboMinus Concentration Module. Fragmenta-

tion of the RNA was done with RNaseIII (LifeTechnologies,

RNA-Seq Kit) (37uC, 10 min) and again purified with the

RiboMinus Concentration Module. The samples were dried with

a Speed Vacuum Pump, resuspended in 3 ml of nuclease-free

water and the SOLiD Adapters were ligated (65uC, 10 min; 16uC,

5 min). After ligation, mRNAs were reversely transcribed into

cDNA with Array Script TM Reverse Transcriptase (Life

Technologies, RNA-Seq Kit) and purification was done with

Qiagen’s MinElute PCR Purification Kit, eluting in 20 ml

nuclease-free water. cDNA fragments between 150 nt and

250 nt (fragmented transcripts + adaptor sequences) were isolated

from a 6% TBE Urea Gel (Novex-System, Invitrogen). cDNA

from gel slices was amplified with 16 PCR cycles using the same

59-Primer for each sample and two different 39-Primers including

the barcode sequences (SOLiD Multiplexing Barcoding Kit

01-16). Purification was done with the Micro PCR Purification

Kit (Invitrogen Corporation).

,40 nt and 40–150 nt size fractionation library preparation.

3.5 mg of total RNA of the sample was enriched with the

flashPAGE Fractionator (Ambion) with a modified protocol

(runtime 40 min) in order to enrich RNA molecules up to

150 nt. Purification was done with the flashPAGE Clean up Kit

(Ambion). The samples were dried with a Speed Vacuum Pump,

resuspended in 3 ml of nuclease-free water and the SOLiD

Adapters were ligated (65uC, 10 min; 16uC, 5 min). After ligation,

small RNAs were reverse transcribed into cDNA with Array

ScriptTM Reverse Transcriptase, (Life Technologies, RNA-Seq

Kit) and purification was done with Qiagen’s MinElute PCR

Purification Kit, eluting in 20 ml. Afterwards, the small RNAs

(cDNA) were size-selected on a 10% TBE Urea Gel (Novex-

System, Invitrogen). Different size ranges were collected from the

gel (60–80 nt, 80–120 nt, 120–150 nt) and amplified with 16 PCR

cycles using the same 59-Primer for each sample and four different

39-Primers including the barcode sequences (SOLiD Multiplexing

Barcoding Kit 01-16). PCR purification was done with the Micro

PCR Purification Kit (Invitrogen Corporation). A total of six

purified and barcoded DNA libraries were analyzed on a HS-

DNA Chip on the Agilent Bioanalyzer 2100 and subsequently

pooled in equimolar amounts.

Next generation sequencing. The pooled libraries were diluted

to a concentration of 60 pg/ml. DNA was amplified monoclonally

on magnetic beads in an emulsion PCR. Emulsions were broken

with butanol and the remaining oil was washed off the double-

stranded beads. DNA molecules on the bead surface were

denatured to allow hybridization to polystyrene enrichment beads.

Using a glycerol cushion null beads can be separated from the

templated beads. In an additional denaturation step, the templated

beads were separated from the enrichment beads. The 39-ends of

the DNA molecules on the bead’s surface were enzymatically

modified for deposition on the sequencing slide. The beads were

loaded onto a slide and sequenced on a SOLiD 3 Plus analyzer

producing reads of 50 nt length.

Data processing
To identify and characterize new candidates as well as to

compare known sRNAs to our transcriptome data set we

implemented a novel computational pipeline. See Fig. 1 for an

overview of all processing steps. We made use of the specific data

set properties including the SOLiD sequencing technique,

producing short and ‘‘color coded’’ sequencing data and data,

split into two growth conditions and three RNA size fractions. The

two growth conditions representing extracellular and intracellular

lifestyle of L. monocytogenes and the size fractions containing

extracted RNA of different lengths, namely ,40 nt, 40–150 nt

and .150 nt. The fragmentation will allow for a fine-grained
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differentiation between degradation products of large RNA

molecules and independently expresses sRNAs.

Fig. 1 gives an overview over this pipeline, for a detailed

description of the pipeline and the used parameters see supple-

mentary file S1. In brief, the pipeline first maps reads onto a

reference genome using a short read mapper. We compared

different mapping programs for this purpose, including SHRiMP,

Bfast and BWA, and performed a parameter evaluation to achieve

an optimal mapping. Based on this evaluation we chose BWA as

mapper with a maximum mismatch rate per read of 2. Our

pipeline then utilizes annotation data as well as coverage

information from different size fractions to filter the dataset and

identify large RNA molecules expressed on the genome. The L.

monocytogenes genome annotation was obtained on 28/09/2011

from NCBI RefSeq: (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

Listeria_monocytogenes_EGD_e_uid61583/). Our pipeline con-

siders reads of smaller fractions that were aligned to a region in

which a larger fraction indicated a transcript as degradation

products originating from the larger transcript. After masking of all

known transcripts as well as degradation products, an expanding

window algorithm identified putative novel sRNA candidates

within the remaining transcriptome.

The pipeline also implements a number of downstream analysis

tools. These include an automatic comparison tool to identify

equivalent sRNAs between different size fractions, samples, or

studies, enabling us to quickly compare other studies of the same

organism or differential expression between experimental condi-

tions. An automated classification system is also part of the

pipeline to classify transcription start sites, asRNAs, and classical

sRNAs. A last tool enables a more fine-grained statistical analysis

of differential expression between two given datasets. It visualizes

the data in an MA-plot and lets the user select custom thresholds

depending on average expression, to fine-tune the significance of

the differential expression.

The pipeline as well as the corresponding java program

ncFinder are accessible at http://fileshare.csb.univie.ac.at/

ncFinder_associated_files/pipeline.tgz and http://fileshare.csb.

univie.ac.at/ncFinder_associated_files/ncFinder.zip respectively.

Differential expression analysis
We used NOIseq [37] to perform a differential expression

analysis. The method based on the assumption, that on average,

the expression is similar between case and control. We used

RPKM to normalize the data and required a p-value of ,0.1 for a

locus to be considered differentially expressed. We summarized

the results in supplemental table S2.

Figure 1. Schematic representation of the main computational pipeline used in this study and its input and output. The pipeline is
optimized to work with sequence data from fractionated RNA samples containing RNA fragments of different lengths. Data gathered under various
conditions can also be used for differential expression analysis. For this study we used data from the SOLiD High Throughput Sequencing (HTS)
platform, but the pipeline will also process data from all major HTS platforms. The individual steps within the pipeline are colored either gray or
orange representing steps for which existing software was used and newly implemented features respectively. The result of the pipeline will be lists
of pre-classified sRNA candidates.
doi:10.1371/journal.pone.0083979.g001
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Conservation analysis
Mauve was used to check the conservation status of the nine

sRNAs. Multiple genome alignments were calculated using default

parameters for the following Listeria species: Listeria monocytogenes

serovar 1/2a EGD-e (NC_003210), Listeria innocua CLIP11262

(NC_003212.1), Listeria welshimeri serovar 6b str. SLCC5334

(NC_008555.1), Listeria seeligeri serovar 1/2b str. SLCC3954

(NC_013891.1), Listeria ivanovii subsp. ivanovii PAM 55

(NC_016011.1) and Listeria marthii FSL S4-120 (NZ_CM

001047.1).

Oligonucleotides
Oligonucleotides that were used for northern blot hybridization

and qRT-PCR are listed in supplementary table S3.

Northern blot analysis
RNA samples (,30 mg were normalized to 5S rRNA hybrid-

ization signals) were denatured for five minutes at 65uC in loading

buffer containing 50% deionized formamide, separated on urea-

polyacrylamide (10%) gels, and transferred to nylon membrane by

electroblotting in a semi dry blotter according to the manufactur-

er’s recommendations. Membranes were hybridized with gene-

specific [c-32P]-end-labeled oligodeoxy-ribonucleotides [24].

59end labeling of primers with [c-32P]ATP
DNA probes were generated by 59-end-labelling of RNA –

specific oligonucleotides with [c-32P] ATP which is described

elsewhere [24]. All probes were purified on G25 Microspin

columns (GE healthcare) and probes were further used for

hybridization.

Quantitative real-time PCR analysis
Total RNA was isolated from the L. monocytogenes EGD-e grown

in BHI medium and macrophages as described above. RNA

isolation was followed by production of strand-specific cDNA from

1 mg total RNA and SuperScript II Reverse Transcriptase

(Invitrogen) by using primers designated _a (see supplementary

table S3) which is complementary to the asRNA or the lmo2673.

The generated cDNA probes were subjected to quantitative real-

time PCR in a final volume of 25 ml using primers designated _b

(see supplementary table S3) and QuantiTect SYBR Green PCR

kit (Qiagen) according to the manufacturer’s instruction. A

standard curve was generated for the used primer pairs using

different copy numbers of genomic DNA from EGD-e (see

supplementary table S3). For each primer pair a negative control

(water), RNA sample without reverse transcriptase (to determine

genomic DNA contamination) and a sample with known amount

of copy numbers (to test the efficiency of the reaction) were

included as controls during cDNA quantification. All samples after

real-time PCR were run on a 1.5% agarose gel to verify that only a

single band was produced.

Statistical data analysis
All infection experiments for qRT-PCR and northern blots

analysis were performed in a minimum of three biological

experiments. Significant differences between two values were

compared with a paired Student’s t-test. Values were considered

significantly different when the p value was less than 0.05 (p,0.05).

Accession number
RNA sequencing data have been deposited to EBI (http://

www.ebi.ac.uk/), accession number PRJEB4644.

Results

To investigate the transcriptome of L. monocytogenes RNA was

extracted from bacteria grown either in BHI (extracellular growth)

or in murine macrophages (intracellular growth). The RNA was

then fractionated into 3 fractions with cutoffs ,40 nt, 40–150 nt

and .150 nt respectively to aid unambiguous differentiation

between sRNA and degradation products of larger RNA

molecules. Subsequently RNA extracts were sequenced using

SOLiD sequencing technology. A total of 21 million reads over six

sequencing runs were obtained. Reads from the fraction contain-

ing RNA ,40 nt were trimmed to 30 nt length since we expected

a high false sequencing error at the 39 end of these reads. We

applied quality filtering to the reads to ensure that reads which

very likely contain sequencing errors are not used in further

analysis. A total of 71% of reads were retained after filtering.

Detailed filtering counts are listed in supplementary table S4.

Application of our sRNA pipeline on the data yields a total of 711

sRNA candidates for further analysis.

Transcription start site detection
A specific pattern, creating a large pileup of reads with identical

starting positions, located shortly upstream of annotated genes and

operons, was a common structure seen in our data. Fig. 2 indicates

such a read pattern before the gene dnaA. Its location and well-

defined start was a hint, that these read patterns represent the

transcription start sites (TSS) of the corresponding downstream

gene or operon. An alignment of 20 randomly chosen samples of

putative TSS from our data with TSS data from Wurtzel and

colleagues [4] was performed to verify this assumption. Unfortu-

nately it is impossible to clearly identify TSS solely based on the

data at hand. However, we consistently found our putative TSS to

be within 1 nt from those described by Wurtzel and coworkers [4],

confirming that these patterns indicate TSS. Furthermore, we

cannot distinguish between independent sRNAs and processed

TSS’s. Hence we removed all sRNAs identified as possible TSS

from our later analysis.

Identification and validation of sRNAs in the sequence
data

The high coverage with a total of 21 million SOLiD reads of

50 nt length enabled us to compare all of the 263 known sRNAs in

L. monocytogenes, that were identified previously [2–4,18,20]. 142 of

the 711 automatically identified sRNA candidates from this study

were previously identified by three studies [2–4], as represented in

Fig. 3. While these 142 (55%) known sRNAs were recovered by

the automatic pipeline, a manual revision of known sRNAs

specifically aiming at sRNAs, which were missed due to either the

conservative coverage threshold applied or a filter discarding

candidates too close to, or overlapping with annotated genes,

increased the recovery rate to 90% of the previously described

small RNAs in at least one of the two conditions and at least one of

the 3 corresponding size fractions. When classifying the sRNAs

automatically and manually according to their location and read

patterns, we found 82 of the known sRNAs to represent UTRs of

downstream genes rather than independently transcribed sRNAs

in intergenic space. Furthermore, allowing for minor differences in

size we found that most known sRNA match our findings.

Notably, with all the differences between studies, there seemed to

be a general consensus on the 59 end of sRNAs, hence the

transcription start site, often varying only by 1 or 2 nt, while the 39

end and hence the transcription termination site of the same

sRNA identified by different studies often varied extensively. Both,

methodical limitation in the 39 accuracy as well as biological

Listeria Monocytogenes sRNA Transcriptome
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variation due to unspecific termination of transcription may be a

possible explanation for this observation. We summarized our

findings in supplementary table S1, which contains a comprehen-

sive list of known sRNAs and their features as well as their class

indicated by our study.

The automated classification of sRNA candidates by our

pipeline revealed that 70% of our sRNA candidates resemble

TSS and long UTRs (.150 nt) instead of independent small

transcripts. We removed those candidates and all known sRNAs

from further analysis. The remaining 172 yet undescribed

candidates where manually analyzed for their potential to

resemble new sRNAs on the L. monocytogenes genome. Supplemen-

tary table S2 lists these 172 candidates and their individual

automated and manual classification. Most of the 172 candidates

identified by automated methods were dismissed after a manual

inspection for one of several reasons: (1) probable origin as TSS,

alternative TSS or 39 UTR of a regular gene or annotated ORF,

due to their location and read pattern, (2) expression below the

local noise level, and (3) expression peaks on lowly expressed

genes. The individual reasons to dismiss certain RNAs are also

given in supplementary table S2. However, we propose nine new

sRNAs candidates within the L. monocytogenes genome. These

candidates show sufficient expression above the noise level and

indications of independent expression.

Nine new asRNAs
Analysis of the SOLiD sequencing data lead to the discovery of

new small RNAs mostly transcribed anti-sense of annotated L.

monocytogenes genes. We have picked nine candidates for further

analysis. All nine candidates showed expression opposite of an

annotated gene and therefore were classified as antisense RNAs.

Fig. 4 and Fig. S1 show the read mappings of these nine asRNAs,

which are listed in table 1. For some of the corresponding genes, a

biological function is annotated, allowing us to infer a possible

function of asRNAs.

Conservation analysis was performed using the MAUVE

multiple genome alignment tool [25]. Of the nine candidates,

most were well conserved within other Listeria species. anti0055

however, was specific for L. monocytogenes and anti2330 was found

to be only conserved in L. innocua and L. welshimeri.

The asRNA anti0055 is located antisense of lmo0055 or purA, an

adenylosuccinate synthetase, important in the de novo synthesis of

purine nucleobases, which also plays roles in infection [26] and

intracellular growth [27]. Transcription of the antisense RNA

starts 365 nt downstream of the TSS of purA in the opposite

direction. The exact length of the transcript cannot be assessed,

but additional reads downstream of the sRNAs TSS suggest a

length of at least 289 nt. See Fig. 4(A) for read mappings in this

locus. Significant expression of both, the purA gene as well as its

asRNA can only be detected in the extracellular sample.

Expression in the intracellular sample is very low and not above

the expected noise level.

Another newly identified asRNA is transcribed opposite of

lmo2225, a putative fumarate hydratase according to the KEGG

database and based on orthology assumed to be active within the

Figure 2. Pileup of reads representing the TSS of the dnaA gene
of L. monocytogenes. Reads are mapped onto the L. monocytogenes
genome and depicted as horizontal lines in the top half of the figure.
Forward reads are mapped above, reverse reads below the base line.
Blue reads are from the sample containing RNA fragments ,40 nt,
green reads from the sample containing RNA between 40 nt and
150 nt, red reads from the fraction containing RNA .150 nt. The lower
half of the figure shows the corresponding annotation at this genome
location, with the beginning of the dnaA gene at position 318. Artemis
[39] was used to illustrate the mapped reads and annotation of the
genome.
doi:10.1371/journal.pone.0083979.g002

Figure 3. sRNAs identified by different studies [2–4] and this study and their overlap. sRNAs for this study were identified via
automatic identification with our newly developed pipeline. 144 (55%) known sRNAs were recovered with the automated method. Of the
711 sRNAs identified in total, 569 were yet undescribed. The majority of these, however, were later removed due to their likely origin as transcription
start site and 59 UTR of known genes. Most of sRNAs, which were not recalled by the automated method, were found by manual reevaluation,
increasing the total recall rate to 90%.
doi:10.1371/journal.pone.0083979.g003
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citrate cycle. Its putative TSS is 110 nt upstream of the beginning

of the fumC gene, for which no independent TSS could be

identified. Again, the length of the transcript cannot be

determined with certainty, but additional reads suggest around

110 nt of length. Expression of anti_fumC can be found in intra-

and extracellular sample. However expression is roughly 10-fold

higher in the intracellular sample (see also Fig. 4(B)). Differential

expression analysis found this locus to be differentially expressed

with a p-value of 0.064. L. monocytogenes harbors a prophage locus

with genes from lmo2271 until lmo2332 [28], which at the very end

contains weak, but consistent expression of an antisense RNA. It

covers parts of the genes lmo2330 and lmo2331 and stretches from

near the 39 end of lmo2331 until the 39 end of lmo2330. Expression

can be detected in both extracellular and intracellular condition.

See Fig. 4(C) for a mapping of reads onto the corresponding locus.

Most notably among the nine new asRNAs is anti2367 opposite

of lmo2367 or pgi, coding for a glucose-6-phosphate-isomerase with

suggested function in the pentose-phosphate-pathway and glycol-

ysis (see KEGG-database). Expression starts 568 nt upstream and

on the opposite strand of the putative TSS for pgi. Its length can be

estimated between 325 and 700 nt and expression can only be

detected in the intracellular sample. Its differential expression

p-value is 0.026 with a normalized fold change of 10.

Experimental confirmation of novel asRNA candidates
To confirm the transcriptional regulation of several new

asRNAs ($50 nt) in our study we selected anti0055, anti2106,

Figure 4. Pileup of reads representing four newly identified asRNAs of L. monocytogenes. Putative sRNAs are marked with red boxes. Each
colored line represents a mapped read either on the forward strand (above the line) or the reverse strand (below the line). Blue reads are from the
sample containing RNA fragments ,40 nt, green reads from the sample containing RNA between 40 and150 nt. Red reads from the sample of RNAs
.150 nt. The lower half of each figure shows the corresponding annotation at this genome location. (A) anti0055 (purA). Shown is the extracellular
condition. (B) anti2225 (fumC). Shown is the extracellular condition. (C) anti2330 (lmo2331) in phage locus of L. monocytogenes. Shown is the
extracellular condition. (D) anti2367 (pgi). Shown is the intracellular and extracellular condition respectively. Expression of the pgi gene and the boxed
antisense RNA is mutual exclusive between the two conditions.
doi:10.1371/journal.pone.0083979.g004
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anti2225, anti2330 and anti2367 for performing qRT-PCR

analysis. The results showed that all selected asRNAs are

differentially expressed under intra- and extracellular growth

conditions (see Fig. 5). In addition we could confirm by using

northern blot analysis that anti0055 is up-regulated during

intracellular growth (see Fig. 5(B)).

In the case of anti2673 which is up-regulated during intracel-

lular growth, the corresponding gene lmo2673 (pgi) on the other

hand is down-regulated in the intracellular growth condition. See

Fig. 4 (D) for the alignment of intracellular and extracellular reads

to the L. monocytogenes genome, showing mutual exclusive

expression of pgi and the corresponding asRNA.

Long antisense RNAs
We were able to confirm the expression of five from six

proposed lasRNAs in our sequence data and were able to identify

asRNA candidates that have similar properties. These asRNAs

have been previously reported, but in this study we found these are

likely to resemble much longer lasRNAs. Specifically the asRNAs

anti2046, anti2259, anti2677 and anti2717 all stretch over several

genes and potentially form lasRNAs. Also see the comments of the

corresponding asRNAs in supplementary table S1 for additional

information on these lasRNAs. Supplementary Fig. S2 shows the

mapping for all of the aforementioned possible lasRNAs in the

artemis viewer.

Discussion

Small RNAs in L. monocytogenes have been subject to intensive

research over the last years. Improving technologies with increased

sensitivity lead to the identification of 257 sRNAs in total by

several studies using different techniques [2–4,18,20]. This study

re-evaluates these small RNAs with focus on their probable origin

and functional properties, and proposes nine new non-coding

sRNAs, making use of an extensive transcriptome dataset,

compiling a total of 21 million SOLiD sequencing reads. Five of

these nine new asRNA could be confirmed via qRT-PCR and one

candidate (anti0055) could also be validated in northern blot

experiments by performing three biological independent experi-

ments to show their biological relevance.

Computational prediction of sRNAs by a new pipeline
We implemented a specialized analysis pipeline for the

identification of sRNAs in SOLiD sequencing data. In contrast

to existing pipelines and analysis tools, this pipeline exploits the

specific properties of fractionated RNAseq data to identify sRNAs

with increased sensitivity and specificity. The pipeline makes use of

fractionated RNA data, to improve on the distinction between

degradation products of large RNA molecules and independent

small non-coding RNAs. Since distinction between long UTRs

and sRNAs located 59 of genes or polycistronic transcription and

intergenic sRNAs is often inaccurate based solely on annotational

data and read-pileup-shapes, a manual analysis of the data is still

advised where the complete context of gene expression in an area

can be assessed.

The pipeline was designed for use with SOLiD specific color-

coded sequencing data as an input, but is easily usable with other

next generation sequencing technologies as well, making it

universally applicable. While it is possible to analyze and identify

sRNAs based on a single RNA-Seq experiment with this pipeline,

particularly projects with a multitude of datasets with RNA of

different size fractions will strongly benefit from the pipelines

capabilities of integrating information from between different

datasets. Furthermore downstream analysis tools integrated into

the pipeline help in the fast interpretation of acquired data. They

include a clustering algorithm to identify the same sRNAs in

different samples or studies, an automated sRNA classification

system based on size, position, and read pattern of a candidate, as

well as differential expression analysis to compare data taken

under different conditions. The pipeline can be easily modified to

meet a wide range of requirement for the analysis of transcrip-

tomic data.

lasRNA
Long antisense RNAs are a type of non-coding RNAs that have

been described previously [3,4]. These lasRNAs are significantly

longer than typical, short asRNAs and typically stretch over whole

genes instead of just covering the UTR of a gene. Wurtzel and

colleagues proposed some of these lasRNAs have a double

function both as mRNA and asRNA and introduced a related

structure called excludon [4]. In this structure, two adjacent, yet

oppositely arranged genes overlap with the other gene with their

corresponding transcript and forms corresponding lasRNAs. This

structure has the potential to create an expression regulation by

mutual exclusion, where one gene cannot be expressed while the

other is, as the transcript for one gene will also act as asRNA for

the other.

We were able to identify four previously known asRNAs [3,4]

showing similar properties: anti2046, anti2259, anti2678 and

anti2717 were all found to be significantly longer than originally

Table 1. List of the nine newly identified sRNAs in L. monocytogenes, which are classified as asRNAs with the corresponding
antisense gene given.

name start end strand length class corresponding gene

anti0055 59153 59203 2 50 asRNA lmo0055/purA

anti0466 503060 503108 2 48 asRNA lmo0466

anti2106 2186912 2187025 + 113 asRNA lmo2106

anti2130 2213928 2213976 + 48 asRNA lmo2130

anti2224-2 2314018 2314047 + 29 asRNA lmo2224

anti2225 2315763 2315820 + 57 asRNA lmo2225/fumC

anti2330 2400131 2400197 2 66 asRNA lmo2331

anti2367 2445029 2445120 + 91 asRNA lmo2367/pgi

anti2378 2454760 2454790 2 30 asRNA lmo2378

doi:10.1371/journal.pone.0083979.t001
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proposed. All four candidates have been originally described to

cover part of a single gene, but in our data were found to cover

four to six genes instead. See corresponding comments in

supplementary table S1 and the read pileups in supplemental

Fig. S2. Given the length of the lasRNAs, structures comparable to

the excludons described by Wurtzel and colleagues [4] are likely

for these lasRNAs. The most likely reason for us to identify those

sRNAs as significantly longer than before described, is the higher

sequencing coverage in our experiments. It enables us to identify

weekly but consistently transcribed areas better than before,

leading to the discovery of previously unidentified long transcripts

that were originally thought to be distinct or shorter.

Identification of nine new sRNA candidates
Automated identification of asRNA in the data and manual

refinement of results revealed nine new sRNAs candidates in L.

monocytogenes. Most notably among these are four asRNAs opposite

of the genes lmo2225 (fumC), lmo2330, lmo0055 (purA) and lmo2367

(pgi).

The prophage A118 can be found in the L. monocytogenes EGD-e

genome inserted between the genes lmo2271 and lmo2332 [22]. At

the very end of this prophage region, covering the 39 end of

lmo2331 and the 59 end of lmo2330 we identified another down-

regulated asRNA (see Fig. 5 (C)). lmo2331 is predicted to encode a

cell wall lipoprotein, while lmo2330 is similar to the phage protein

gp33. Antisense transcription of the prophage genes has previously

been reported and this might be an additional case of such [2–4].

Figure 5. Validation of new asRNA transcripts from L. monocytogenes and their effect on gene regulation after transition to the
intracellular growth conditions. A) The antisense RNA transcript anti0055 (purA) is validated by northern blot analysis and strand-specific qRT-
PCR. The graph shows intracellular up-regulation of anti0055. B) Northern blot images of anti0055 and control 5S rRNA EC: Extracellular, IC:
Intracellular. C) The presence of antisense transcripts anti2106 (lmo2106), anti2225 (fumC), and anti2330 (lmo2330) was determined by strand-specific
qRT-PCR. anti2330 is down-regulated, anti2106 and anti2225 are up-regulated significantly. D) Strand-specific qRT-PCR analysis confirmed the
existence and up-regulation of antisense RNA transcript anti2367. pgi (lmo2367) was down-regulated, which indicates the possible role of anti2367 in
pgi gene regulation. ‘*’ P#0.05; ‘**’ P#0.01; ‘***’ P#0.001.
doi:10.1371/journal.pone.0083979.g005
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Apart from this general antisense transcription it might represent

specific and active repression of phage gene expression, as phage

control by means of antisense transcription is a long known

phenomenon [29]. More recently Irnov and colleagues also

reported the expression of asRNA in prophages of Bacillus subtilis

and suggested a function in maintaining the phage host

equilibrium [14].

Antisense of the purA gene we were able to identify an asRNA at

the 59 end of the gene. The purA gene encodes a putative

adenylosuccinate synthetase with assumed function in the de novo

purine synthesis pathway, making it an essential enzyme in the

synthesis pathway of purine nucleobases. Purine synthesis seem-

ingly plays an important role for intracellular growth of L.

monocytogenes [27] and a L. monocytogenes serotype 4b strain with a

mutation of purA is known to be strongly attenuated in the

infection of mice [26]. This makes a lifestyle dependent regulation

of purA very likely, and asRNAs are known to play a major role in

the adaption to rapid environmental changes in general [30] as

well as the transition of L. monocytogenes from saprophytic to virulent

lifestyle in particular [31]. However, no classical or obvious

regulation pattern could be found when analyzing expression of

both the purA gene and its corresponding asRNA within the RNA-

Seq data which could be also observed by qRT-PCR (data not

shown). We observed increased expression of asRNA anti0055

under intracellular versus extracellular growth condition using

qRT-PCR analysis as well as northern blot analysis (see Fig. 5 (A

and B)). The biological relevance of this up-regulated asRNA has

to be characterized in future.

We identified a new asRNA anti2225 opposite of the fumC gene,

coding for a fumarate hydratase typically with central function in

the TCA-cycle. Interestingly, an antisense transcript of the

homologous gene has also been found in the Gram-negative

Helicobacter pylori and experimentally verified by northern blot and

RT-PCR [32]. In addition, many asRNAs of housekeeping genes

of Cyanobacterium synechocystis have been identified [33], demon-

strating that such asRNAs are a common mechanism of

transcriptional regulation. Furthermore L. monocytogenes is already

suspected to have an interrupted TCA-cycle [34]. Also it shown

that even an interrupted TCA-cycle may serve as an essential

generator for purine for which we already propose a regulation by

means of PurA [35]. Furthermore Schauer and coworkers have

shown the central role of purine biosynthesis for intracellular

growth [27]. Here we could show that expression of the fumC gene

(data not shown) as wells as anti2225 (see Fig. 5(C)) is up-regulated

after transition to the intracellular lifestyle. Biological interpreta-

tion of these finding is challenging at this point and needs further

experimental validation. Signs of classical asRNA regulation

patterns can be found expressed opposite of the gene lmo2367/

pgi for anti2367. Inspecting the sequencing data of the intracellular

and extracellular growth condition, the expression of either the

gene or the asRNA seems to be mutually exclusive, giving a hint

for a causal link and a possible regulation mechanism interfering

with the expression of pgi on the transcriptional level. This pattern

is clearly visible in Fig. 4(D) and Fig. 5(D) showing the mapped

reads for both the intracellular and the extracellular condition

which could be also confirmed by qRT-PCR analysis. Expression

of the pgi gene is low for the intracellular growth, and high for the

extracellular growth, while expression of the corresponding

asRNA on the opposite strand is high for the intracellular and

low for the extracellular condition (see Fig. 5(D)). lmo2367/pgi,

encodes a glucose-6-phosphate isomerase with central function in

the interface between glycolysis and the pentose phosphate

pathway. Previous reports link the transition from extracellular

to intracellular growth of L. monocytogenes to a reduced expression of

pgi [36] and a corresponding shift in metabolic pathways leading to

the degradation of glucose phosphate by the pentose phosphate

pathway [1]. Furthermore a proteomic study was able to identify

the pgi corresponding peptides under two different extracellular

conditions but not within intracellular conditions of L. monocytogenes

[37]. As a housekeeping gene, pgi is under the control of a

housekeeping promoter, and hence requires promoter indepen-

dent specific regulation of this gene. The identification of anti2367

sheds lights on the metabolic adaptation on transcriptional level by

antisense RNAs in L. monocytogenes.

Conclusion
The high coverage and strong strand specificity of our data

revealed a substantial amount of general antisense transcription

over the L. monocytogenes genome. Similar general antisense

transcription has been described previously [33,38]. The biological

relevance of this phenomenon is not yet fully understood, but the

finding of such in another bacterial organism underlines its

importance of further inquiry of the matter. Given the high

number of newly identified asRNAs as well as the identification of

exceptionally long non coding antisense RNAs, lasRNAs, it is

obvious that antisense transcription is an important factor in the

regulatory network of L. monocytogenes and it should be investigated

whether similar types of regulation are common in other bacterial

species.
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