9 research outputs found

    Swimmer-tracer scattering at low Reynolds number

    Full text link
    Understanding the stochastic dynamics of tracer particles in active fluids is important for identifying the physical properties of flow generating objects such as colloids, bacteria or algae. Here, we study both analytically and numerically the scattering of a tracer particle in different types of time-dependent, hydrodynamic flow fields. Specifically, we compare the tracer motion induced by an externally driven colloid with the one generated by various self-motile, multi-sphere swimmers. Our results suggest that force-free swimmers generically induce loop-shaped tracer trajectories. The specific topological structure of these loops is determined by the hydrodynamic properties of the microswimmer. Quantitative estimates for typical experimental conditions imply that the loops survive on average even if Brownian motion effects are taken into account.Comment: 14 pages, to appear in Soft Matte

    Low Reynolds number hydrodynamics of asymmetric, oscillating dumbbell pairs

    Full text link
    Active dumbbell suspensions constitute one of the simplest model system for collective swimming at low Reynolds number. Generalizing recent work, we derive and analyze stroke-averaged equations of motion that capture the effective hydrodynamic far-field interaction between two oscillating, asymmetric dumbbells in three space dimensions. Time-averaged equations of motion, as those presented in this paper, not only yield a considerable speed-up in numerical simulations, they may also serve as a starting point when deriving continuum equations for the macroscopic dynamics of multi-swimmer suspensions. The specific model discussed here appears to be particularly useful in this context, since it allows one to investigate how the collective macroscopic behavior is affected by changes in the microscopic symmetry of individual swimmers.Comment: 10 pages, to appear in EPJ Special Topic

    Stereotactic or conformal radiotherapy for adrenal metastases: patient characteristics and outcomes in a multicenter analysis

    Get PDF
    To report outcome (freedom from local progression: FFLP, overall survival: OS, and toxicity) after stereotactic, palliative, or highly conformal fractionated (> 12) radiotherapy (SBRT, Pall-RT, 3DCRT/IMRT) for adrenal metastases in a retrospective multicenter cohort within the framework of the German Society for Radiation Oncology (DEGRO). Adrenal metastases treated with SBRT (≤ 12 fractions, biologically effective dose, (BED10) ≥ 50 Gy), 3DCRT/IMRT (> 12 fractions, BED10 ≥ 50 Gy) or Pall-RT (BED10 < 50 Gy) were eligible for this analysis. In addition to unadjusted FFLP (Kaplan-Meier/Log-rank), we calculated the competing-risk-adjusted local recurrence rate (CRA-LRR). 326 patients with 366 metastases were included by 21 centers (median follow-up: 11.7 months). Treatment was SBRT, 3DCRT/IMRT, and Pall-RT in 260, 27, and 79 cases, respectively. Most frequent primary tumors were non-small-cell lung cancer (NSCLC; 52.5%), SCLC (16.3%), and melanoma (6.7%). Unadjusted FFLP was higher after SBRT v. Pall-RT (p = 0.026) while numerical differences in CRA-LRR between groups did not reach statistical significance (1-year CRA-LRR: 13.8%, 17.4%, and 27.7%). OS was longer after SBRT v. other groups (p < 0.05) and increased in patients with locally-controlled metastases in a landmark analysis (p < 0.0001). Toxicity was mostly mild; notably, 4 cases of adrenal insufficiency occurred, 2 of which were likely caused by immunotherapy or tumor progression. RT for adrenal metastases was associated with a mild toxicity profile in all groups and a favorable 1-year CRA-LRR after SBRT or 3DCRT/IMRT. 1-year FFLP was associated with longer OS. Dose-response analyses for the dataset are underway

    Collective behaviour of model microswimmers

    No full text
    At small length scales, low velocities, and high viscosity, the effects of inertia on motion through fluid become insignificant and viscous forces dominate. Microswimmer propulsion, of necessity, is achieved through different means than that achieved by macroscopic organisms. We describe in detail the hydrodynamics of microswimmers consisting of colloidal particles and their interactions. In particular we focus on two-bead swimmers and the effects of asymmetry on collective motion, calculating analytical formulae for time-averaged pair interactions and verifying them with microscopic time-resolved numerical simulation, finding good agreement.We then examine the long-term effects of a swimmer's passing on a passive tracer particle, finding that the force-free nature of these microswimmers leads to loop-shaped tracer trajectories. Even in the presence of Brownian motion, the loop-shaped structures of these trajectories can be recovered by averaging over a large enough sample size.Finally, we explore the phenomenon of synchronisation between microswimmers through hydrodynamic interactions, using the method of constraint forces on a force-based swimmer. We find that the hydrodynamic interactions between swimmers can alter the relative phase between them such that phase-locking can occur over the long term, altering their collective motion

    Collective behaviour of model microswimmers

    No full text
    At small length scales, low velocities, and high viscosity, the effects of inertia on motion through fluid become insignificant and viscous forces dominate. Microswimmer propulsion, of necessity, is achieved through different means than that achieved by macroscopic organisms. We describe in detail the hydrodynamics of microswimmers consisting of colloidal particles and their interactions. In particular we focus on two-bead swimmers and the effects of asymmetry on collective motion, calculating analytical formulae for time-averaged pair interactions and verifying them with microscopic time-resolved numerical simulation, finding good agreement.We then examine the long-term effects of a swimmer's passing on a passive tracer particle, finding that the force-free nature of these microswimmers leads to loop-shaped tracer trajectories. Even in the presence of Brownian motion, the loop-shaped structures of these trajectories can be recovered by averaging over a large enough sample size.Finally, we explore the phenomenon of synchronisation between microswimmers through hydrodynamic interactions, using the method of constraint forces on a force-based swimmer. We find that the hydrodynamic interactions between swimmers can alter the relative phase between them such that phase-locking can occur over the long term, altering their collective motion.This thesis is not currently available in ORA

    F-18-florbetaben A beta imaging in mild cognitive impairment

    No full text
    F-florbetaben and positron emission tomography were used to examine the relationships between b-amyloid (Ab) deposition, cognition, hippocampal volume, and white matter hyperintensities in mild cognitive impairment (MCI).Methods: Forty-five MCI participants were evaluated. A neocortical standardized uptake value ratio threshold ≥ 1.45 was used to discriminate high from low Ab burden. Correlations were adjusted for age, gender and years of education.Results: High A b burden was found in 53% of MCI. Regression analyses showed standardized uptake value ratio (r= -0.51,P= 0.0015) and hippocampal volume (r= 0.60,P= 0.024) both contributing to episodic memory impairment in independent fashion. White matter hyperintensities correlated with nonmemory cognition, and this correlation was particularly associated with Ab burden.Conclusion: Higher Ab deposition in MCI is associated with more severe memory impairment and is contributing to early amnestic symptoms independent of hippocampal atrophy

    To Which World Regions Does the Valence-Dominance Model of Social Perception Apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution
    corecore