48 research outputs found
Mass Spectrometry in the Home and Garden
Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application
Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh
In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes
Temporal Dynamics of Host Molecular Responses Differentiate Symptomatic and Asymptomatic Influenza A Infection
Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza
Recasting the theory of mosquito-borne pathogen transmission dynamics and control
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald\u27s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Mass Spectrometry Anywhere
Mass spectrometers are at the forefront of chemical analysis for small and large molecules, oceanic and interplanetary studies, forensic analysis, and clinical investigations. Over the past century, mass spectrometry development has been influenced by scientists from all disciplines. The prevalence of mass spectrometry in every corner of science is due to its high selectivity and sensitivity, wide chemical scope and to its adaptable nature. Mass spectrometry refers to the generation and analysis of ions according to their mass-to-charge. With such general constraints, scientists have approached ion generation and analysis in imaginative ways leading to multiple Nobel prizes throughout its history. While many analytical problems can be solved from lab, many problems are best addressed in situ to maintain sample integrity and to avoid worsening the backlog with non-critical samples, at least as a screening practice. Examples of this include forensic and interplanetary samples. Commercial benchtop mass spectrometers are restricted to primary and satellite labs because they are heavy, expensive, consume significant amounts of power and are not [physically] robust. Miniature mass spectrometers mitigate these concerns while sacrificing some analytical performance. These sacrifices arise from smaller vacuum systems and less stable electronics. Notwithstanding, miniature ion trap mass spectrometers such as the Mini 12, excel in chemical analysis because it has the same scan functions as its full-size counterpart allowing for qualitative and quantitative analysis in the lab and in the field. The development of minimalistic ionization techniques known as ambient ionization has helped to encourage the removal of miniature mass spectrometers from the typical lab confines, to the field. The work discussed herein chronicles the integration of mass spectrometry into the home, the clinic and the process organic lab. Throughout these projects, the mass spectrometer was transported to the sample rather than the sample to the instrument thus emphasizing the importance of a robust analytical instrument capable of qualitative and quantitative analysis. To achieve these goals, the mass spectrometer was adapted to the problem by varying the ionization method, building new hardware, or even modifying the data analysis system
Accelerated chemical reactions and organic synthesis in Leidenfrost droplets
Leidenfrost levitated droplets can be used to accelerate chemical reactions in processes that appear similar to reaction acceleration in charged microdroplets produced by electrospray ionization. Reaction acceleration in Leidenfrost droplets is demonstrated for a base-catalyzed Claisen-Schmidt condensation, hydrazone formation from precharged and neutral ketones, and for the Katritzky pyrylium into pyridinium conversion under various reaction conditions. Comparisons with bulk reactions gave intermediate acceleration factors (2-50). By keeping the volume of the Leidenfrost droplets constant, it was shown that interfacial effects contribute to acceleration; this was confirmed by decreased reaction rates in the presence of a surfactant. The ability to multiplex Leidenfrost microreactors, to extract product into an immiscible solvent during reaction, and to use Leidenfrost droplets as reaction vessels to synthesize milligram quantities of product is also demonstrated
Electrophoretic Desalting To Improve Performance in Electrospray Ionization Mass Spectrometry
Mass spectrometers are sensitive
tools used to identify and quantify
both small and large analytes using the mass-to-charge ratios (<i>m</i>/<i>z</i>) of ions generated by electrospray
ionization (ESI) or other methods. Ionization typically generates protonated
or deprotonated forms of the analytes or adducts with adventitious
metal ions derived from the spray solvent. The formation of a variety
of ionized forms of the analyte as well as the presence of cluster
ions complicates the data and can have deleterious effects on the
performance of the mass spectrometer, especially under high salt or
buffer conditions. To address this, a method involving a dual-electrode
nano-electrospray source has been implemented to rapidly and temporarily
desalt the spray solution of interfering cationic and anionic species
using electrophoretic transport from the spray tip. Peptides, proteins,
and pharmaceutical drugs all showed improved results after the desalting
process as measured by the quality of the mass spectra and the limits
of detection achieved. Importantly ordinary phosphate buffers could
be used to record protein mass spectra by nano-ESI