300 research outputs found

    Pathomechanisms Underlying X-Adrenoleukodystrophy: A Three-hit Hypothesis

    Get PDF
    X-adrenoleukodystrophy (X-ALD) is a complex disease where inactivation of ABCD1 gene results in clinically diverse phenotypes, the fatal disorder of cerebral ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). Loss of ABCD1 function results in defective beta oxidation of very long chain fatty acids (VLCFA) resulting in excessive accumulation of VLCFA, the biochemical "hall mark" of X-ALD. At present, the ABCD1-mediated mechanisms that determine the different phenotype of X-ALD are not well understood. The studies reviewed here suggest for a "three-hit hypothesis" for neuropathology of cALD. An improved understanding of the molecular mechanisms associated with these three phases of cALD disease should facilitate the development of effective pharmacological therapeutics for X-ALD

    Phylogenomic Evidence for a Myxococcal Contribution to the Mitochondrial Fatty Acid Beta-Oxidation

    Get PDF
    Background The origin of eukaryotes remains a fundamental question in evolutionary biology. Although it is clear that eukaryotic genomes are a chimeric combination of genes of eubacterial and archaebacterial ancestry, the specific ancestry of most eubacterial genes is still unknown. The growing availability of microbial genomes offers the possibility of analyzing the ancestry of eukaryotic genomes and testing previous hypotheses on their origins. Methodology/Principal Findings Here, we have applied a phylogenomic analysis to investigate a possible contribution of the Myxococcales to the first eukaryotes. We conducted a conservative pipeline with homologous sequence searches against a genomic sampling of 40 eukaryotic and 357 prokaryotic genomes. The phylogenetic reconstruction showed that several eukaryotic proteins traced to Myxococcales. Most of these proteins were associated with mitochondrial lipid intermediate pathways, particularly enzymes generating reducing equivalents with pivotal roles in fatty acid β-oxidation metabolism. Our data suggest that myxococcal species with the ability to oxidize fatty acids transferred several genes to eubacteria that eventually gave rise to the mitochondrial ancestor. Later, the eukaryotic nucleocytoplasmic lineage acquired those metabolic genes through endosymbiotic gene transfer. Conclusions/Significance Our results support a prokaryotic origin, different from α-proteobacteria, for several mitochondrial genes. Our data reinforce a fluid prokaryotic chromosome model in which the mitochondrion appears to be an important entry point for myxococcal genes to ente

    SIRT2 in age-related neurodegenerative disorders

    Get PDF
    Sirtuin 2 (SIRT2) is one of seven members of the NAD+-dependent histone deacetylases (HDAC) family of proteins. Sirtuins play diverse roles in cellular metabolism and the aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination [1]

    Current and Future Pharmacological Treatment Strategies in X-linked Adrenoleukodystrophy

    Get PDF
    Mutations in the ABCD1 gene cause the clinical spectrum of the neurometabolic disorder X-linked adrenoleukodystrophy/adrenomyeloneuropathy (X-ALD/AMN). Currently, the most efficient therapeutic opportunity for patients with the cerebral form of X-ALD is hematopoietic stem cell transplantation and possibly gene therapy of autologous hematopoietic stem cells. Both treatments, however, are only accessible to a subset of X-ALD patients, mainly because of the lack of markers that can predict the onset of cerebral demyelination. Moreover, for female or male X-ALD patients with AMN, currently only unsatisfying therapeutic opportunities are available. Thus, this review focuses on current and urgently needed future pharmacological therapies. The treatment of adrenal and gonadal insufficiency is well established, whereas applications of immunomodulatory and immunosuppressive drugs have failed to prevent progression of cerebral neuroinflammation. The use of Lorenzo's oil and the inefficacy of lovastatin to normalize very-long-chain fatty acids in clinical trials as well as currently experimental and therefore possible future therapeutic strategies are reviewed. The latter include pharmacological gene therapy mediated by targeted upregulation of ABCD2, the closest homolog of ABCD1, antioxidative drug treatment, small molecule histone deacetylase inhibitors such as butyrates and valproic acid, and other neuroprotective attempts

    Histone Deacetylase Inhibitor Upregulates Peroxisomal Fatty Acid Oxidation And Inhibits Apoptotic Cell Death In Abcd1-deficient Glial Cells

    Get PDF
    In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal beta-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of antiapoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD

    Staging Anti-Inflammatory Therapy in Alzheimer's Disease

    Get PDF
    The use of non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease (AD) is controversial because conclusions from numerous epidemiological studies reporting delayed onset of AD in NSAID users have not been corroborated in clinical trials. The purpose of this personal view is to revise the case for NSAIDs in AD therapeutics in light of: (i) the last report from the only primary prevention trial in AD, ADAPT, which, although incomplete, points to significant protection in long-term naproxen users, and (ii) the recently proposed dynamic model of AD evolution. The model contends that there is a clinical silent phase in AD that can last up to 20 years, the duration depending on life style habits, genetic factors, or cognitive reserve. The failure of many purported disease-modifying drugs in AD clinical trials is forcing the view that treatments will only be efficacious if administered pre-clinically. Here we will argue that NSAIDs failed in clinical trials because they are disease-modifying drugs, and they should be administered in early stages of the disease. A complete prevention trial in cognitively normal individuals is thus called for. Further, the shift of anti-inflammatory treatment to early stages uncovers a knowledge void about the targets of NSAIDs in asymptomatic individuals. AD researchers have mostly relied on post-mortem analysis of Aβ plaque-laden brains from demented patients or animal models, thus drawing conclusions about AD pathogenesis based on late symptoms. We will discuss evidence in support that defective, not excessive, inflammation underlies AD pathogenesis, that NSAIDs are multifunctional drugs acting on inflammatory and non-inflammatory targets, and that astrocytes and microglia may play differing roles in disease progression, with an emphasis of ApoEε4 as a key, undervalued target of NSAIDs. According to a meta-analysis of epidemiological data, NSAIDs afford an average protection of 58%. If this figure is true, and translated into patient numbers, NSAID treatment may revive as a worth pursuing strategy to significantly reduce the socio-economical burden imposed by AD

    Cyclophilin D as a potential target for antioxidants in neurodegeneration: the X-ALD case

    Get PDF
    Abstract: X-linked adrenoleukodystrophy (X-ALD) is a severe inherited neurodegenerative disorder characterized by adrenal insufficiency and graded damage in the nervous system. Loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long-chain fatty acids in organs and plasma, is the genetic cause. Treatment with a combination of antioxidants halts the axonal degeneration and locomotor impairment displayed by the animal model of X-ALD, and is a proof of concept that oxidative stress contributes to axonal damage. New evidence demonstrates that metabolic failure and the opening of the mitochondrial permeability transition pore orchestrated by cyclophilin D underlies oxidative stress-induced axonal degeneration. Thus, cyclophilin D could serve as a therapeutic target for the treatment of X-ALD and cyclophilin D-dependent neurodegenerative and non-neurodegenerative diseases

    Epigenomic signature of adrenoleukodystrophy predicts compromised oligodendrocyte differentiation

    Get PDF
    Epigenomic changes may either cause disease or modulate its expressivity, adding a layer of complexity to mendelian diseases. X-linked adrenoleukodystrophy (X-ALD) is a rare neurometabolic condition exhibiting discordant phenotypes, ranging from a childhood cerebral inflammatory demyelination (cALD) to an adult-onset mild axonopathy in spinal cords (AMN). The AMN form may occur with superimposed inflammatory brain demyelination (cAMN). All patients harbor loss of function mutations in the ABCD1 peroxisomal transporter of very-long chain fatty acids. The factors that account for the lack of genotype-phenotype correlation, even within the same family, remain largely unknown. To gain insight into this matter, here we compared the genome-wide DNA methylation profiles of morphologically intact frontal white matter areas of children affected by cALD with adult cAMN patients, including male controls in the same age group. We identified a common methylomic signature between the two phenotypes, comprising (i) hypermethylation of genes harboring the H3K27me3 mark at promoter regions, (ii) hypermethylation of genes with major roles in oligodendrocyte differentiation such as MBP, CNP, MOG and PLP1 and (iii) hypomethylation of immune-associated genes such as IFITM1 and CD59. Moreover, we found increased hypermethylation in CpGs of genes involved in oligodendrocyte differentiation, and also in genes with H3K27me3 marks in their promoter regions in cALD compared with cAMN, correlating with transcriptional and translational changes. Further, using a penalized logistic regression model, we identified the combined methylation levels of SPG20, UNC45A and COL9A3 and also, the combined expression levels of ID4 and MYRF to be good markers capable of discriminating childhood from adult inflammatory phenotypes. We thus propose the hypothesis that an epigenetically controlled, altered transcriptional program may drive an impaired oligodendrocyte differentiation and aberrant immune activation in X-ALD patients. These results shed light into disease pathomechanisms and uncover putative biomarkers of interest for prognosis and phenotypic stratification

    Complete loss of KCNA1 activity causes neonatal epileptic encephalopathy and dyskinesia

    Get PDF
    Background: Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. Methods: A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. Results: WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. Conclusion: This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice
    • …
    corecore