2,485 research outputs found
Image transfer through a chaotic channel by intensity correlations
The three-wave mixing processes in a second-order nonlinear medium can be
used for imaging protocols, in which an object field is injected into the
nonlinear medium together with a reference field and an image field is
generated. When the reference field is chaotic, the image field is also chaotic
and does not carry any information about the object. We show that a clear image
of the object be extracted from the chaotic image field by measuring the
spatial intensity correlations between this field and one Fourier component of
the reference. We experimentally verify this imaging protocol in the case of
frequency downconversion.Comment: 17 pages, 7 figure
The Determination of Nuclear Level Densities from Experimental Information -
A novel Information Theory based method for determining the density of states
from prior information is presented. The energy dependence of the density of
states is determined from the observed number of states per energy interval and
model calculations suggest that the method is sufficiently reliable to
calculate the thermal properties of nuclei over a reasonable temperature range.Comment: 7 pages + 6 eps figures, REVTEX 3.
High Glucose Impairs Expression and Activation of MerTK in ARPE-19 Cells
MerTK (Mer Tyrosine Kinase) is a cell surface receptor that regulates phagocytosis of pho-toreceptor outer segments (POS) in retinal pigment epithelial (RPE) cells. POS phagocytosis is im-paired in several pathologies, including diabetes. In this study, we investigate whether hyperglyce-mic conditions may affect MerTK expression and activation in ARPE-19 cells, a retinal pigment epithelial cellular model. ARPE-19 cells were cultured in standard (CTR) or high-glucose (HG) me-dium for 24 h. Then, we analyzed: mRNA levels and protein expression of MerTK and ADAM9, a protease that cleaves the extracellular region of MerTK; the amount of cleaved Mer (sMer); and the ability of GAS6, a MerTK ligand, to induce MerTK phosphorylation. Since HG reduces miR-126 levels, and ADAM9 is a target of miR-126, ARPE-19 cells were transfected with miR-126 inhibitor or mimic; then, we evaluated ADAM9 expression, sMer, and POS phagocytosis. We found that HG reduced expression and activation of MerTK. Contextually, HG increased expression of ADAM9 and the amount of sMer. Overexpression of miR-126 reduced levels of sMer and improved phago-cytosis in ARPE-19 cells cultured with HG. In this study, we demonstrate that HG compromises MerTK expression and activation in ARPE-19 cells. Our results suggest that HG up-regulates ADAM9 expression, leading to increased shedding of MerTK. The consequent rise in sMer coupled to reduced expression of MerTK impairs binding and internalization of POS in ARPE-19 cells
Advanced Glycation End-Products and Hyperglycemia Increase Angiopoietin-2 Production by Impairing Angiopoietin-1-Tie-2 System
The angiopoietin-Tie-2 system plays a crucial role in the maintenance of endothelial integrity. Hyperglycemia and advanced glycation end-products (AGEs) are involved in endothelial cell dysfunction responsible of the pathogenesis of microvascular complications of diabetes. Here, we investigated whether glycated serum (GS) or hyperglycemia (HG) affect the angiopoietin-Tie-2 system in the microvascular endothelial cells HMEC-1. We found that culture for 5 days in the presence of AGEs and HG (alone or in combination) decreased cell proliferation, increased reactive oxygen species (ROS) production, and reduced ratio between the oxidized and the reduced form of glutathione. Since angiopoietin-1 (Ang-1) signaling regulates angiopoietin-2 (Ang-2) expression through inactivation of the forkhead transcription factor FoxO1, we investigated intracellular signaling of Ang-1 and expression of Ang-2. HG and AGEs reduced phosphorylation of Akt and abrogated phosphorylation of FoxO1 induced by Ang-1 without affecting neither Tie-2 expression nor its activation. Furthermore, AGEs and/or HG induced nuclear translocation of FoxO1 and increased Ang-2 production. In conclusion, we demonstrated that both hyperglycemia and AGEs affect the angiopoietin-Tie-2 system by impairing Ang-1/Tie-2 signaling and by increasing Ang-2 expression. These results suggest that therapeutic strategies useful in preventing or delaying the onset of diabetic vascular complications should be aimed to preserve Ang-1 signaling
Learning progressions: An overview and how-to guide for researchers in physics education
Learning progressions are a well established model in science education research to represent the learning process. It lies at the heart of the learning progressions the idea that students develop their knowledge of a subject from naive conceptions and, through a series of intermediate stages of increasingly sophisticated understanding, come to master a scientifically correct body of knowledge. Starting from a learning progression, it is possible to develop entire curricula and large-scale evaluation tools based on empirical data. We will present a review of the literature on learning progressions and discuss possible implications for research in physics education and teaching practice
The Long Journey from Ab Initio Calculations to Density Functional Theory for Nuclear Large Amplitude Collective Motion
At present there are two vastly different ab initio approaches to the
description of the the many-body dynamics: the Density Functional Theory (DFT)
and the functional integral (path integral) approaches. On one hand, if
implemented exactly, the DFT approach can allow in principle the exact
evaluation of arbitrary one-body observable. However, when applied to Large
Amplitude Collective Motion (LACM) this approach needs to be extended in order
to accommodate the phenomenon of surface-hoping, when adiabaticity is strongly
violated and the description of a system using a single (generalized) Slater
determinant is not valid anymore. The functional integral approach on the other
hand does not appear to have such restrictions, but its implementation does not
appear to be straightforward endeavor. However, within a functional integral
approach one seems to be able to evaluate in principle any kind of observables,
such as the fragment mass and energy distributions in nuclear fission. These
two radically approaches can likely be brought brought together by formulating
a stochastic time-dependent DFT approach to many-body dynamics.Comment: 9 page
Recommended from our members
Vaterite-nanosilver hybrids with antibacterial properties and pH-triggered release
Silver nanoparticles (AgNPs) have been used for over a century in various applications due to their distinctive properties. Nonetheless, the poor stability of AgNPs and adverse effects on living organisms have driven the search for materials able to protect and better control their release. Vaterite CaCO3 crystals have been studied in the last two decades as carriers for different drugs due to their biocompatibility, easy synthesis and pH-sensitive properties. Herein, AgNPs were loaded into vaterite to protect, store, and control their release, resulting in CaCO3/AgNPs hybrids. To tune the release of the AgNPs, the recrystallization of the hybrids into thermodynamically more stable calcite was studied and modulated with carboxymethyledextran (DexCM) and poly(4-styrenesulfonic acid) sodium salt (PSS), with the last one being able to stabilise the hybrids and prevent a premature release of the AgNPs at low contents (2%, w/w). The release of AgNPs from the hybrids was studied at pH 5 to 9, showing a pH-dependent release suppression for PSS-stabilised hybrids. Various mathematical models were applied to clarify the release mechanism, confirming the role of PSS in stabilising and targeting the release of AgNPs. The antibacterial studies demonstrated that the hybrids protect the AgNPs without affecting their activity, with the released nanoparticles being effective against Escherichia coli, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Overall, this work sheds light on the release mechanisms of AgNPs from the inorganic hybrids helping to foresee the release profiles of other compounds from vaterite
Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages.
Iron balance is tightly linked to inflammation and it has been demonstrated that many proteins involved in cellular iron management are up- or down-regulated by inflammatory stimuli, ultimately leading to iron retention in the reticuloendothelial system. Ferroportin is a key player in maintenance of correct iron homeostasis, because it is the only known mammalian cellular iron exporter. In this work we show that incubation of THP-1 monocytes/macrophages with lactoferrin prevents the LPS-induced decrease of ferroportin by reducing secretion of IL-6. © 2014 Springer Science+Business Media New York.Iron balance is tightly linked to inflammation
and it has been demonstrated that many proteins
involved in cellular iron management are up- or downregulated
by inflammatory stimuli, ultimately leading
to iron retention in the reticuloendothelial system.
Ferroportin is a key player in maintenance of correct
iron homeostasis, because it is the only known
mammalian cellular iron exporter. In this work we
show that incubation of THP-1 monocytes/macrophages
with lactoferrin prevents the LPS-induced
decrease of ferroportin by reducing secretion of IL-6
Direct and enantioselective aldol reactions catalyzed by chiral nickel(II) complexes
A direct and asymmetric aldol reaction of N-acylthiazinanethiones with aromatic aldehydes catalyzed by chiralnickel(II) complexes is reported. The reaction gives thecorresponding O-TIPS-protected anti-aldol adducts in highyields and with remarkable stereocontrol and atom economy.Furthermore, the straightforward removal of the achiralscaffold provides enantiomerically pure intermediates ofsynthetic interest, which involve precursors for anti-a-amino-b-hydroxy anda,b-dihydroxy carboxylic derivatives. Theoret-ical calculations explain the observed high stereocontrol
New data on OZI rule violation in bar{p}p annihilation at rest
The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+
pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen
target are presented. It was found that the value of this ratio increases with
the decreasing of the dipion mass, which demonstrates the difference in the phi
and omega production mechanisms. An indication on the momentum transfer
dependence of the apparent OZI rule violation for phi production from the 3S1
initial state was found.Comment: 11 pages, 3 PostScript figures, submitted to Physics Letter
- …