16 research outputs found

    Infection of Semen-Producing Organs by SIV during the Acute and Chronic Stages of the Disease

    Get PDF
    International audienceBACKGROUND: Although indirect evidence suggests the male genital tract as a possible source of persistent HIV shedding in semen during antiretroviral therapy, this phenomenon is poorly understood due to the difficulty of sampling semen-producing organs in HIV+ asymptomatic individuals. METHODOLOGY/PRINCIPAL FINDINGS: Using a range of molecular and cell biological techniques, this study investigates SIV infection within reproductive organs of macaques during the acute and chronic stages of the disease. We demonstrate for the first time the presence of SIV in the testes, epididymides, prostate and seminal vesicles as early as 14 days post-inoculation. This infection persists throughout the chronic stage and positively correlates with blood viremia. The prostate and seminal vesicles appear to be the most efficiently infected reproductive organs, followed by the epididymides and testes. Within the male genital tract, mostly T lymphocytes and a small number of germ cells harbour SIV antigens and RNA. In contrast to the other organs studied, the testis does not display an immune response to the infection. Testosteronemia is transiently increased during the early phase of the infection but spermatogenesis remains unaffected. CONCLUSIONS/SIGNIFICANCE: The present study reveals that SIV infection of the macaque male genital tract is an early event and that semen-producing organs display differential infection levels and immune responses. These results help elucidate the origin of HIV in semen and constitute an essential base to improving the design of antiretroviral therapies to eradicate virus from semen

    In vivo induction of cellular and humoral immune responses by hybrid DNA vectors encoding simian/human immunodeficiency virus/hepatitis B surface antigen virus particles in BALB/c and HLA-A2-transgenic mice.

    No full text
    International audienceTo improve the immunogenicity of epitopes derived from Gag proteins of simian immunodeficiency virus (SIV) and from the envelope (Env) protein of human immunodeficiency virus type 1 (HIV-1), we have designed hybrid DNA vaccines by inserting sequences encoding antigenic domains of SIV and HIV-1 into the hepatitis B virus envelope gene. This gene encodes the hepatitis B surface antigen (HBsAg) capable of spontaneous assembly into virus-like particles that were used here as carrier. Injections of hybrid vectors encoding B-cell epitopes from the gp41 and the gp120 envelope proteins of HIV-1 induced specific humoral responses in BALB/c mice. Furthermore, high frequencies of IFN-gamma-secreting CD8+ T cells specific for various antigenic determinants of SIV-Gag were observed after intramuscular injections of hybrid DNA vectors in BALB/c mice. Genetic immunization of HLA-A2.1-transgenic mice with HIV-Env/HBsAg-encoding DNA generated a strong CTL response and IFN-gamma-secreting CD8+ T lymphocytes specific for HIV-1 envelope-derived peptide. H-2d-restricted HBs-specific T-cell responses dominated over SIV-Gag responses in BALB/c mice whereas HLA-A2-restricted HIV-Env response was enhanced after fusion with HBsAg. These data demonstrate that different B and T-cell epitopes of vaccine-relevant viral antigens can be expressed in vivo as fusion proteins with HBsAg but that the optimal immunogenicity may differ strikingly between individual epitopes

    Comparative analysis of BRAF, NRAS and c-KIT mutation status between tumor tissues and autologous tumor cell-lines of stage III/IV melanoma

    No full text
    International audienceIn the last decade, advances in molecular biology have provided evidence of the genotypic heterogeneity of melanoma. We analysed BRAF, NRAS and c-KIT alterations in tissue samples from 63 stage III/IV melanoma patients and autologous cell-lines, using either allele-specific or quantitative PCR. The expression of BRAF V600E protein was also investigated using an anti-BRAF antibody in the same tissue samples. 81% of FFPE samples and tumor cell-lines harboured a genetic alteration in either BRAF (54%) or NRAS (27%) oncogenes. There was a strong concordance (100%) between tissue samples and tumor cell-lines. The BRAF V600E mutant-specific antibody showed high sensitivity (96%) and specificity (100%) for detecting the presence of a BRAF V600E mutation. The correlation was of 98% between PCR and immunohistochemistry results for BRAF mutation. These results suggest that BRAF and NRAS mutation status of tumor cells is not affected by culture conditions

    Loss of reactivity of vaccine-induced CD4 T cells in immunized monkeys after SIV/HIV challenge.

    No full text
    International audienceBACKGROUND: Immunization protocols involving priming with DNA and boosting with recombinant live virus vectors such as recombinant modified Vaccinia Ankara (rMVA) are considered as vaccine candidates against HIV. Such protocols improve the outcome of simian/human immunodeficiency virus (SHIV) pathogenic challenge in Rhesus monkeys. OBJECTIVES: To investigate the fate of vaccine-induced T cells after a mucosal SHIV challenge. METHODS: We immunized Rhesus monkeys (Macaca mulatta) by DNA priming followed by rMVA boost. After intrarectal challenge with SHIV 89.6P, immunized animals demonstrated early control of viral replication and stable CD4 T-cell counts. We monitored T-cell responses by measuring IFN-gamma secretion and proliferation. RESULTS: Immunization induced strong and sustained SHIV-specific CD4 and CD8 T-cell responses. CD8 T-cell responses were recalled during acute infection, whereas none of the vaccine-induced SHIV-specific CD4 T-cell responses were recalled. Moreover, most of the CD4 T-cell responses became undetectable in peripheral blood or lymph nodes even after in-vitro peptide stimulation. In contrast, we persistently detected CD4 T-cell responses specific for control recall antigens in infected animals. CONCLUSION: SHIV 89.6P challenge results in a lack of reactivity of vaccine-induced SHIV-specific CD4 T cells. These results may have important implications in the AIDS vaccine field, especially for the evaluation of new vaccine candidates, both in preventive and therapeutic trials

    Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma

    No full text
    Although metastasis is the leading cause of cancer-related death, it is not clear why some patients with localized cancer develop metastatic disease after complete resection of their primary tumor. Such relapses have been attributed to tumor cells that disseminate early and remain dormant for prolonged periods of time; however, little is known about the control of these disseminated tumor cells. Here, we have used a spontaneous mouse model of melanoma to investigate tumor cell dissemination and immune control of metastatic outgrowth. Tumor cells were found to disseminate throughout the body early in development of the primary tumor, even before it became clinically detectable. The disseminated tumor cells remained dormant for varying periods of time depending on the tissue, resulting in staggered metastatic outgrowth. Dormancy in the lung was associated with reduced proliferation of the disseminated tumor cells relative to the primary tumor. This was mediated, at least in part, by cytostatic CD8+ T cells, since depletion of these cells resulted in faster outgrowth of visceral metastases. Our findings predict that immune responses favoring dormancy of disseminated tumor cells, which we propose to be the seed of subsequent macroscopic metastases, are essential for prolonging the survival of early stage cancer patients and suggest that therapeutic strategies designed to reinforce such immune responses may produce marked benefits in these patients
    corecore