360 research outputs found

    Time decay of scaling critical electromagnetic Schr\"odinger flows

    Full text link
    We obtain a representation formula for solutions to Schr\"odinger equations with a class of homogeneous, scaling-critical electromagnetic potentials. As a consequence, we prove the sharp L1LL^{1}\to L^{\infty} time decay estimate for the 3D-inverse square and the 2D-Aharonov-Bohm potentials.Comment: 32 pages, 1 figur

    Treatment effects of removable functional appliances in pre-pubertal and pubertal Class II patients: A systematic review and meta-analysis of controlled studies

    Get PDF
    BACKGROUND: Treatment effects of removable functional appliances in Class II malocclusion patients according to the pre-pubertal or pubertal growth phase has yet to be clarified. OBJECTIVES: To assess and compare skeletal and dentoalveolar effects of removable functional appliances in Class II malocclusion treatment between pre-pubertal and pubertal patients. SEARCH METHODS: Literature survey using the Medline, SCOPUS, LILACS and SciELO databases, the Cochrane Library from inception to May 31, 2015. A manual search was also performed. SELECTION CRITERIA: Randomised (RCTs) or controlled clinical trials with a matched untreated control group. No restrictions were set regarding the type of removable appliance whenever used alone. DATA COLLECTION AND ANALYSIS: For the meta-analysis, cephalometric parameters on the supplementary mandibular growth were the main outcomes, with other cephalometric parameters considered as secondary outcomes. Risk of bias in individual and across studies were evaluated along with sensitivity analysis for low quality studies. Mean differences and 95% confidence intervals for annualised changes were computed according to a random model. Differences between pre-pubertal and pubertal patients were assessed by subgroup analyses. GRADE assessment was performed for the main outcomes. RESULTS: Twelve articles (but only 3 RCTs) were included accounting for 8 pre-pubertal and 7 pubertal groups. Overall supplementary total mandibular length and mandibular ramus height were 0.95 mm (0.38, 1.51) and 0.00 mm (-0.52, 0.53) for pre-pubertal patients and 2.91 mm (2.04, 3.79) and 2.18 mm (1.51, 2.86) for pubertal patients, respectively. The subgroup difference was significant for both parameters (p<0.001). No maxillary growth restrain or increase in facial divergence was seen in either subgroup. The GRADE assessment was low for the pre-pubertal patients, and generally moderate for the pubertal patients. CONCLUSIONS: Taking into account the limited quality and heterogeneity of the included studies, functional treatment by removable appliances may be effective in treating Class II malocclusion with clinically relevant skeletal effects ifperformed during the pubertal growth phase

    Serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDK1) as a key regulator of cell migration and cancer dissemination

    Get PDF
    Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K) pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1). PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C), and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase). Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt), myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα), Rho associated coiled-coil containing protein kinase 1 (ROCK1), phospholipase C gamma 1 (PLCγ1) and β3 integrin. Moreover, PDK1 regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis in human patients. The aim of this review is to summarize the various mechanisms by which PDK1 controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion regulation, and finally, to discuss the evidence supporting a role for PDK1 in cancer cell invasion and dissemination

    Planting Systems for Modern Olive Growing: Strengths and Weaknesses

    Get PDF
    The objective of fully mechanizing olive harvesting has been pursued since the 1970s to cope with labor shortages and increasing production costs. Only in the last twenty years, after adopting super-intensive planting systems and developing appropriate straddle machines, a solution seems to have been found. The spread of super-intensive plantings, however, raises serious environmental and social concerns, mainly because of the small number of cultivars that are currently used (basically 2), compared to over 100 cultivars today cultivated on a large scale across the world. Olive growing, indeed, insists on over 11 million hectares. Despite its being located mostly in the Mediterranean countries, the numerous olive growing districts are characterized by deep differences in climate and soil and in the frequency and nature of environmental stress. To date, the olive has coped with biotic and abiotic stress thanks to the great cultivar diversity. Pending that new technologies supporting plant breeding will provide a wider number of cultivars suitable for super-intensive systems, in the short term, new growing models must be developed. New olive orchards will need to exploit cultivars currently present in various olive-growing areas and favor increasing productions that are environmentally, socially, and economically sustainable. As in fruit growing, we should focus on “pedestrian olive orchards”, based on trees with small canopies and whose top can be easily reached by people from the ground and by machines (from the side of the top) that can carry out, in a targeted way, pesticide treatments, pruning and harvesting

    Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan

    Get PDF
    Olive (Olea europaea L.) is a widely spread tree species in the Mediterranean. In the last decades, olive farming has known major management changes with high economic and environmental impacts. The fast track expansion of this modern olive farming in these recent years casts doubts on the sustainability of such important tree plantation across the Mediterranean. In this work, we performed a spatial modelling analysis to investigate the implications of climate variability and farming management on the productivity and environmental performances of olive orchards around the Mediterranean. Implementation of this research is based on the use of OliveCan; a process-based model able to illustrate responses of water and carbon balances to weather variables, soil characteristics and management techniques enabling the comprehension of olive orchard dynamics under heterogeneous conditions of climate and agricultural practices. Four main intensification levels were adopted to reflect the main olive grove types from traditional to new intensive plantations: low density LD (100 trees ha−1), medium density MD (200 trees ha−1), high density HD (400 trees ha−1) and super high density SHD (1650 trees ha−1). Managements tested were intensification, water supply (rainfed, deficit and full irrigated) and the fate of pruning residues (exported or left on the soil). Two cases studies in two of the main Mediterranean olive-growing regions with contrasting environmental conditions, Tuscany and Jaen regions, focused on mitigation alternative managements for carbon sequestration. Results showed that olive orchards responses in terms of yield and Net Ecosystem Productivity (NEP) vary along with climatic conditions. Water supply was the main driver with a production function that varies for different atmospheric demands. Application of deficit irrigation proved to boost water use efficiency. Besides, intensification from LD to SHD, presented the greatest improvements, 28–73% for yield and 50–100% for NEP. The C sequestration potential of olive orchards was confirmed. In fact, soil organic carbon (SOC) increased continuously over 400 years of simulation, reaching a state of equilibrium. Moreover, intensification and irrigation improved total carbon sequestration. Management of incorporating pruning residues in the soil increased SOC of 10.5 t C ha−1 for Tuscany and 10.8 t C ha−1 for Jaen. Findings of this research enabled the identification of the main drivers influencing the productive and environmental performance of olive groves in the different Mediterranean sub-climates. Impacts of management innovations on olive farming sustainability were also quantified which may help improve production systems for a more sustainable olive cultivation

    On the compliance of thermal performance requirements for highly insulated building units

    Get PDF
    The target of the nearly zero-energy building (nZEB), stated by the European Union, represents one of the most strenuous challenges to reduce energy consumptions and greenhouse gas emissions in the building sector. In Italy, the nZEB concept refers to a set of energy performance requirements, fixed at national level and establishing a maximum allowable mean thermal transmittance value of the building envelope, as a function of the heating degree-days and of the shape factor. The building envelope is becoming more and more thermally insulated; this determines the reduction of the energy need for heating, but on the other hand it can cause the indoor overheating and the resulting increase of the energy need for cooling. In the design of highly energy efficient buildings, the different energy needs should be kept in balance as to increase the overall energy performance. The article aims to investigate the conditions and extent for which the envelope insulation is beneficial for containing overall energy needs. A sensitivity analysis that involves different insulation levels of the building envelope is performed on some apartments of a typical residential building, located in three different Italian climatic zones. The energy performance calculations are carried out by means of a detailed dynamic simulation tool (EnergyPlus). The results point out that, whereas the effect of increasing the thermal insulation causes a stable reduction of the energy need for heating, the energy need for cooling is very sensitive to the apartment storey; specifically, it increases in ground-floor apartments, and decreases for topfloor building units. Its reduction becomes progressively more consistent at the decrease of the heating degree-days. Considering the annual imbalances between the energy needs for cooling and heating due to the hyper-insulated envelope, reference values of thermal transmittance can be derived as to maximise the overall energy performance of the building
    corecore