192 research outputs found

    From formation to disruption : observing the multiphase evolution of a solar flare current sheet

    Get PDF
    X.C. is funded by NSFC grants 11722325, 11733003, 11790303, and 11790300 and the Alexander von Humboldt Foundation.A current sheet, where magnetic energy is liberated through reconnection and converted to other forms, is thought to play the central role in solar flares, the most intense explosions in the heliosphere. However, the evolution of a current sheet and its subsequent role in flare-related phenomena such as particle acceleration is poorly understood. Here we report observations obtained with NASA's Solar Dynamics Observatory that reveal a multiphase evolution of a current sheet in the early stages of a solar flare, from its formation to quasi-stable evolution and disruption. Our observations have implications for the understanding of the onset and evolution of reconnection in the early stages of eruptive solar flares.Publisher PDFPeer reviewe

    Locating current sheets in the solar corona

    Get PDF
    Current sheets are essential for energy dissipation in the solar corona, in particular by enabling magnetic reconnection. Unfortunately, sufficiently thin current sheets cannot be resolved observationally and the theory of their formation is an unresolved issue as well. We consider two predictors of coronal current concentrations, both based on geometrical or even topological properties of a force free coronal magnetic field. First, there are separatrices related to magnetic nulls. Through separatrices the magnetic connectivity changes discontinuously. Coronal magnetic nulls are, however, very rare. At second, inspired by the concept of generalized magnetic reconnection without nulls, quasi-separatrix layers (QSL) were suggested. Through QSL the magnetic connectivity changes continuously, though strongly. The strength of the connectivity change can be quantified by measuring the squashing of the flux tubes which connect the magnetically conjugated photospheres. We verify the QSL and separatrix concepts by comparing the sites of magnetic nulls and enhanced squashing with the location of current concentrations in the corona. Due to the known difficulties of their direct observation we simulated the coronal current sheets by numerically calculating the response of the corona to energy input from the photosphere heating a simultaneously observed EUV Bright Point. We did not find coronal current sheets not at the separatrices but at several QSL locations. The reason is that although the geometrical properties of force free extrapolated magnetic fields can indeed, hint at possible current concentrations, a necessary condition for current sheet formation is the local energy input into the corona

    Is null-point reconnection important for solar flux emergence?

    Full text link
    The role of null-point reconnection in a 3D numerical MHD model of solar emerging flux is investigated. The model consists of a twisted magnetic flux tube rising through a stratified convection zone and atmosphere to interact and reconnect with a horizontal overlying magnetic field in the atmosphere. Null points appear as the reconnection begins and persist throughout the rest of the emergence, where they can be found mostly in the model photosphere and transition region, forming two loose clusters on either side of the emerging flux tube. Up to 26 nulls are present at any one time, and tracking in time shows that there is a total of 305 overall, despite the initial simplicity of the magnetic field configuration. We find evidence for the reality of the nulls in terms of their methods of creation and destruction, their balance of signs, their long lifetimes, and their geometrical stability. We then show that due to the low parallel electric fields associated with the nulls, null-point reconnection is not the main type of magnetic reconnection involved in the interaction of the newly emerged flux with the overlying field. However, the large number of nulls implies that the topological structure of the magnetic field must be very complex and the importance of reconnection along separators or separatrix surfaces for flux emergence cannot be ruled out.Comment: 26 pages, 12 figures. Added one referenc

    Effect of the curvature and the {\beta} parameter on the nonlinear dynamics of a drift tearing magnetic island

    Get PDF
    We present numerical simulation studies of 2D reduced MHD equations investigating the impact of the electronic \beta parameter and of curvature effects on the nonlinear evolution of drift tearing islands. We observe a bifurcation phenomenon that leads to an amplification of the pressure energy, the generation of E \times B poloidal flow and a nonlinear diamagnetic drift that affects the rotation of the magnetic island. These dynamical modifications arise due to quasilinear effects that generate a zonal flow at the onset point of the bifurcation. Our simulations show that the transition point is influenced by the \beta parameter such that the pressure gradient through a curvature effect strongly stabilizes the transition. Regarding the modified rotation of the island, a model for the frequency is derived in order to study its origin and the effect of the \beta parameter. It appears that after the transition, an E \times B poloidal flow as well as a nonlinear diamagnetic drift are generated due to an amplification of the stresses by pressure effects

    The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies

    Full text link
    We develop an approach of Grad-Shafranov (GS) reconstruction for toroidal structures in space plasmas, based on in-situ spacecraft measurements. The underlying theory is the GS equation that describes two-dimensional magnetohydrostatic equilibrium as widely applied in fusion plasmas. The geometry is such that the arbitrary cross section of the torus has rotational symmetry about the rotation axis ZZ, with a major radius r0r_0. The magnetic field configuration is thus determined by a scalar flux function Ψ\Psi and a functional FF that is a single-variable function of Ψ\Psi. The algorithm is implemented through a two-step approach: i) a trial-and-error process by minimizing the residue of the functional F(Ψ)F(\Psi) to determine an optimal ZZ axis orientation, and ii) for the chosen ZZ, a χ2\chi^2 minimization process resulting in the range of r0r_0. Benchmark studies of known analytic solutions to the toroidal GS equation with noise additions are presented to illustrate the two-step procedures and to demonstrate the performance of the numerical GS solver, separately. For the cases presented, the errors in ZZ and r0r_0 are 9^\circ and 22\%, respectively, and the relative percent error in the numerical GS solutions is less than 10\%. We also make public the computer codes for these implementations and benchmark studies.Comment: submitted to Sol. Phys. late Dec 2016; under review; code will be made public once review is ove

    The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops

    Full text link
    It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy state, which is modelled by relaxation theory, i.e., helicity is conserved and the ratio of current to field becomes invariant within the loop. We apply the model so that all the loops within an ensemble achieve instability followed by energy-releasing relaxation. The result is a nanoflare energy distribution. Furthermore, we produce different distributions by varying the loop aspect ratio, the nature of the path to instability taken by each loop and also the level of radial expansion that may accompany loop relaxation. The heating rate obtained is just sufficient for coronal heating. In addition, we also show that kink instability cannot be associated with a critical magnetic twist value for every point along the instability threshold

    Phase mixing of standing Alfven waves with shear flows in solar spicules

    Full text link
    Alfvenic waves are thought to play an important role in coronal heating and solar wind acceleration. Here we investigate the dissipation of such waves due to phase mixing at the presence of shear flow and field in the stratified atmosphere of solar spicules. The initial flow is assumed to be directed along spicule axis and to vary linearly in the x direction and the equilibrium magnetic field is taken 2-dimensional and divergence-free. It is determined that the shear flow and field can fasten the damping of standing Alfven waves. In spite of propagating Alfven waves, standing Alfven waves in Solar spicules dissipate in a few periods. As height increases, the perturbed velocity amplitude does increase in contrast to the behavior of perturbed magnetic field. Moreover, it should be emphasized that the stratification due to gravity, shear flow and field are the facts that should be considered in MHD models in spicules.Comment: Accepted for publication in Astrophysics & Space Scienc

    Small scale energy release driven by supergranular flows on the quiet Sun

    Get PDF
    In this article we present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows. A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag of the footpoints of magnetic structures. In this paper we present evidence of small scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular scale flows. We show strong spatial and temporal correlation between quiet Sun soft X-ray emission (from <i>Yohkoh</i> and <i>SOHO</i> MDI-derived flux removal events driven by deduced photospheric flows. We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors. In the near future, high resolution soft X-ray images from XRT on the <i>Hinode</i> satellite will allow definitive, quantitative verification of our results

    A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. I. Theory

    Full text link
    We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components Bx(x)B_x({\bf x}), By(x)B_y({\bf x}), Bz(x)B_z({\bf x}), the force-free parameter α(x)\alpha({\bf x}), the electric current density j(x){\bf j}({\bf x}), and are accurate to second-order (of the nonlinear force-free α\alpha-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.Comment: Solar Physics (in press), 26 pages, 11 figure
    corecore