487 research outputs found

    Leather properties as a function of cattle breed

    Get PDF
    Content: Since hundreds of years, tanners share the opinion that hides from different cattle breeds lead to varying leather qualities. Especially European hides from the alpine region (e. g. Simmentaler or brown origin) are preferred by tanners. These leathers feature a higher thickness, a maximum utilisation induced by a minor thickness difference over the whole area and a lower tensile strength in contrast to leathers from other breeds. However, are these alpine hides better because of their breed affiliation or because they are kept in special regional conditions? It is known that, besides the breed, also other factors can influence the rawhide and leather quality like age, gender, nutrition and climate conditions. In addition, present dairy and beef cattle are high-performance cattle by breeding, which leads to more crossbreeds than 100 years ago. Our intention was to find out, whether leather quality nowadays is still a function of breed or not. For that purpose, 40 rawhides from four different cattle breeds (Angus, Charolais, Simmentaler, Limousin) were collected from the Saxon region. From each breed, five male and five female rawhides were collected. The age of each individual was restricted to two years. All 40 rawhides were tanned with the same technology for furniture leather. Leather quality was characterized by determining chemical and physical parameters. Chemical parameters included collagen content, fat content and ignition lost (DIN 181218). The physical parameters were tensile strength (DIN EN ISO 3376), elongation at break (DIN EN ISO 3376) and stitch tear resistance (DIN EN ISO 23910). The analyses revealed that the chemical parameters were identical for all examined breeds. For this reason, the chemical composition of a cattle skin is irrespective of breed origin. The tensile strength of the leathers showed only a small significant difference between Angus and Limousin (p= 0.05). Leathers from Limousin hides showed significantly different elongations at break compared to Angus, Charolais and Simmentaler. The stitch tear resistance varied in nearly all breeds. Significant differences were detected between all breeds except between Angus and Charolais as well as Angus and Simmentaler. Plotting the measured physical values against gender or age of the individuals showed no correlation. In summary, only minor differences between the cattle breeds were found. But this tendency must be confirmed by a larger quantity of test individuals. For this purpose, an analysis is planed with 100 individuals from different breeds and crossbreeds. Take-Away: Many tanners share the opinion that hides from different attle breeds lead to varying leather qualities. We found only minor differences of the physical parameters between the cattle breeds with a random sample of 10 individuals per breed. To confirm this tendency, an analysis is planed with 100 individuals from different breeds and crossbreeds

    Statistical relational learning with soft quantifiers

    Get PDF
    Quantification in statistical relational learning (SRL) is either existential or universal, however humans might be more inclined to express knowledge using soft quantifiers, such as ``most'' and ``a few''. In this paper, we define the syntax and semantics of PSL^Q, a new SRL framework that supports reasoning with soft quantifiers, and present its most probable explanation (MPE) inference algorithm. To the best of our knowledge, PSL^Q is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for link prediction in social trust networks demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves the accuracy of inferred results

    Coupling between phonons and intrinsic Josephson oscillations in cuprate superconductors

    Full text link
    The recently reported subgap structures observed in the current-voltage characteristic of intrinsic Josephson junctions in the high-T_c superconductors Tl_2Ba_2Ca_2Cu_3O_{10+\delta} and Bi_2Sr_2CaCu_2O_{8+\delta} are explained by the coupling between c-axis phonons and Josephson oscillations. A model is developed where c-axis lattice vibrations between adjacent superconducting multilayers are excited by the Josephson oscillations in a resistive junction. The voltages of the lowest structures correspond well to the frequencies of longitudinal c-axis phonons with large oscillator strength in the two materials, providing a new measurement technique for this quantity.Comment: 4 pages, 3 figures, revtex, aps, epsf, psfig. submitted to Physical Review Letters, second version improved in detai

    Two-color interferometer for the study of laser filamentation triggered electric discharges in air

    No full text
    International audienceWe present a space and time resolved interferometric plasma diagnostic for use on plasmas where neutral-bound electron contribution to the refractive index cannot be neglected. By recording simultaneously the plasma optical index at 532 and 1064 nm, we are able to extract independently the neutral and free electron density profiles. We report a phase resolution of 30 mrad, corresponding to a maximum resolution on the order of 4 × 10 22 m −3 for the electron density, and of 10 24 m −3 for the neutral density. The interferometer is demonstrated on centimeter-scale sparks triggered by laser filamentation in air with typical currents of a few tens of A

    A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs

    Full text link
    Structural interactions that enable electron transfer to cytochromeâ P450 (CYP450) from its redox partner CYP450â reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membraneâ bound functional complex to reveal interactions between the fullâ length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochromeâ b5 (cytâ b5), Argâ 125 on the Câ helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study proteinâ protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.Solving a structure of the cytochrome P450 (CYP450) complex with its redox partner is a vital prerequisite to understand the selective route of electron transfer. Structural interactions of CYP450â redox partner complex anchored in lipid membrane are a minimal requirement for functionality (electron transfer). This study unravels the drug/xenobiotic metabolism by diverse microsomal CYPs in their native membrane environment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144586/1/anie201802210.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144586/2/anie201802210_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144586/3/anie201802210-sup-0001-misc_information.pd

    Assessing Novel Lidar Modalities for Maximizing Coverage of a Spaceborne System through the Use of Diode Lasers

    Get PDF
    Current satellite lidars have sparse spatial coverage, leading to uncertainty from sampling. This complicates robust change detection and does not allow applications that require continuous coverage. One potential way to increase lidar sampling density is to use more efficient lasers. All current spaceborne lidars use solid-state lasers with a limited efficiency of 5–8%. In this paper, we investigate the potential for using diode lasers, with their higher efficiencies, as an alternative. Diode lasers have reported efficiencies of about 25% and are much smaller and lighter than solid-state lasers. However, they can only emit good beam quality at lower peak powers, which has so far prevented them from being used in spaceborne lidar applications. In this paper, we assess whether the novel lidar modalities necessitated by these lower peak powers are suitable for satellite lidar, determined by whether they can match the design performance of GEDI by being able to accurately measure ground elevation through 98% canopy cover, referred to as having “98% beam sensitivity”. Through this, we show that a diode laser can be operated in pulse train or pulse compressed lidar (PCL) mode from space, using a photon-counting detector. In the best case scenario, this setup requires a detected energy of Edet=0.027 fJ to achieve a beam sensitivity of 98%, which is less than the 0.28 fJ required by a full-waveform solid-state lidar instrument, exemplified by GEDI. When also accounting for the higher laser and detector efficiency, the diode laser in pulse train mode requires similar shot energy as a photon counting solid-state laser such as ICESat-2 which along with the higher laser efficiency could result in a doubling of coverage. We conclude that there is a clear opportunity for diode lasers to be used in spaceborne lidars, potentially allowing wider coverage through their higher efficiencies

    Transcriptional profiling of Neurospora crassa Δmak-2 reveals that mitogen-activated protein kinase MAK-2 participates in the phosphate signaling pathway

    Get PDF
    AbstractThe filamentous fungus Neurospora crassa is an excellent model system for examining molecular responses to ambient signals in eukaryotic microorganisms. Inorganic phosphate (Pi) is an essential growth-limiting nutrient in nature and is crucial for the synthesis of nucleic acids and the flow of genetic information. The genetic and molecular mechanisms controlling the response to Pi starvation in N. crassa include at least four genes (nuc-2, preg, pogv, and nuc-1), which are involved in a hierarchical regulatory activation network. In a previous work, we identified a number of genes modulated by NUC-2 protein, including the mak-2 gene, which codes for a mitogen-activated protein kinase (MAPK), suggesting its participation in the phosphate signaling pathway. Thus, to identify other genes involved in metabolic responses to exogenous phosphate sensing and the functioning of the MAPK MAK-2, we performed microarray experiments using a mak-2 knockout strain (Δmak-2) grown under phosphate-shortage conditions by comparing its transcription profile to that of a control strain grown in low- and high-phosphate cultures. These experiments revealed 912 unique differentially expressed genes involved in a number of physiological processes related to phosphate transport, metabolism, and regulation as well as posttranslational modification of proteins, and MAPK signaling pathways. Quantitative Real-time PCR gene expression analysis of 18 selected genes, using independent RNA samples, validated our microarray results. A high Pearson correlation between microarray and quantitative Real-time PCR data was observed. The analysis of these differentially expressed genes in the Δmak-2 strain provide evidence that the mak-2 gene participates in the hierarchical phosphate-signaling pathway in N. crassa in addition to its involvement in other metabolic routes such as the isoprenylation pathway, thus revealing novel aspects of the N. crassa phosphorus-sensing network

    High current permanent discharges in air induced by femtosecond laser filamentation

    No full text
    International audienceFilaments created in air by an intense femtosecond laser pulse in the presence of an electric field generate a highly conductive permanent plasma column

    Structure optimization effects on the electronic properties of Bi2_2Sr2_2CaCu2_2O8_8

    Full text link
    We present detailed first-principles calculations for the normal state electronic properties of the high TC_C superconductor Bi2_2Sr2_2CaCu2_2O8_8, by means of the linearized augmented plane wave (LAPW) method within the framework of density functional theory (DFT). As a first step, the body centered tetragonal (BCT) cell has been adopted, and optimized regarding its volume, c/ac/a ratio and internal atomic positions by total energy and force minimizations. The full optimization of the BCT cell leads to small but visible changes in the topology of the Fermi surface, rounding the shape of CuO2_2 barrels, and causing both the BiO bands, responsible for the pockets near the \textit{\=M} 2D symmetry point, to dip below the Fermi level. We have then studied the influence of the distortions in the BiO plane observed in nature by means of a 2×2\sqrt{2}\times\sqrt{2} orthorhombic cell (AD-ORTH) with BbmbBbmb space group. Contrary to what has been observed for the Bi-2201 compound, we find that for Bi-2212 the distortion does not sensibly shift the BiO bands which retain their metallic character. As a severe test for the considered structures we present Raman-active phonon frequencies (q=0q = 0) and eigenvectors calculated within the frozen-phonon approximation. Focussing on the totally symmetric Ag_{g} modes, we observe that for a reliable attribution of the peaks observed in Raman experiments, both cc- and a-axis vibrations must be taken into account, the latter being activated by the in-plane orthorhombic distortion.Comment: 22 pages, 4 figure

    From Analogical Proportion to Logical Proportions

    Get PDF
    International audienceGiven a 4-tuple of Boolean variables (a, b, c, d), logical proportions are modeled by a pair of equivalences relating similarity indicators ( a∧b and a¯∧b¯), or dissimilarity indicators ( a∧b¯ and a¯∧b) pertaining to the pair (a, b), to the ones associated with the pair (c, d). There are 120 semantically distinct logical proportions. One of them models the analogical proportion which corresponds to a statement of the form “a is to b as c is to d”. The paper inventories the whole set of logical proportions by dividing it into five subfamilies according to what they express, and then identifies the proportions that satisfy noticeable properties such as full identity (the pair of equivalences defining the proportion hold as true for the 4-tuple (a, a, a, a)), symmetry (if the proportion holds for (a, b, c, d), it also holds for (c, d, a, b)), or code independency (if the proportion holds for (a, b, c, d), it also holds for their negations (a¯,b¯,c¯,d¯)). It appears that only four proportions (including analogical proportion) are homogeneous in the sense that they use only one type of indicator (either similarity or dissimilarity) in their definition. Due to their specific patterns, they have a particular cognitive appeal, and as such are studied in greater details. Finally, the paper provides a discussion of the other existing works on analogical proportions
    corecore