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Abstract: Current satellite lidars have sparse spatial coverage, leading to uncertainty from sampling.
This complicates robust change detection and does not allow applications that require continuous
coverage. One potential way to increase lidar sampling density is to use more efficient lasers.
All current spaceborne lidars use solid-state lasers with a limited efficiency of 5–8%. In this paper, we
investigate the potential for using diode lasers, with their higher efficiencies, as an alternative. Diode
lasers have reported efficiencies of about 25% and are much smaller and lighter than solid-state lasers.
However, they can only emit good beam quality at lower peak powers, which has so far prevented
them from being used in spaceborne lidar applications. In this paper, we assess whether the novel
lidar modalities necessitated by these lower peak powers are suitable for satellite lidar, determined
by whether they can match the design performance of GEDI by being able to accurately measure
ground elevation through 98% canopy cover, referred to as having “98% beam sensitivity”. Through
this, we show that a diode laser can be operated in pulse train or pulse compressed lidar (PCL) mode
from space, using a photon-counting detector. In the best case scenario, this setup requires a detected
energy of Edet = 0.027 fJ to achieve a beam sensitivity of 98%, which is less than the 0.28 fJ required
by a full-waveform solid-state lidar instrument, exemplified by GEDI. When also accounting for the
higher laser and detector efficiency, the diode laser in pulse train mode requires similar shot energy
as a photon counting solid-state laser such as ICESat-2 which along with the higher laser efficiency
could result in a doubling of coverage. We conclude that there is a clear opportunity for diode lasers
to be used in spaceborne lidars, potentially allowing wider coverage through their higher efficiencies.

Keywords: lidar; pulse compression; photon counting; diode laser

1. Introduction

Lidar has been shown to be the optimum technology to measure bare earth elevation
beneath vegetation canopies and in complex terrain [1], to measure tree height and to
make non-saturating measurements of aboveground biomass [2]. Recent years have seen a
number of lidar satellites launched, all of which are collecting unique data. These include
the Ice, Cloud and land Elevation Satellite 2 (ICESat-2) mission [3], optimized to measure ice
elevation, and the Global Ecosystem Dynamics Investigation (GEDI) mission [2], optimized
to measure forest structure. These provide near global coverage, allowing consistency and
lower cost per unit area than Airborne Laser Scanning (ALS). This makes them the ideal
technology for mapping global vegetation structure [2,4,5].

However, the energy requirements of lidar result in limited spatial and temporal
coverage compared to passive-optical and radar satellites, with even the densest sampling
satellite lidar, GEDI, only directly imaging 2–4% of the Earth’s surface once during its
mission lifetime [2]. This sparse sampling means that multiple years of data need to be
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combined to produce a single global map, and adds uncertainty to the estimate [6]. The
sampling uncertainty and limited temporal coverage limits their use in robust change
detection, something currently limiting the certainty in global carbon modelling [7].

One proposal to overcome this sparse sampling is to use the available lidar data to
calibrate another continuous dataset such as passive-optical [8], radar [9,10] or a fusion of
the two [11]. This approach has underpinned a number of global biomass maps [12–14].
However, some field comparison studies suggest that the uncertainties are being underesti-
mated [15], whilst some studies suggest that overfitting of the calibration models may be
leading to overly optimistic accuracy assessments [16]. These questions currently prevent
such fused products from being used for robust change detection.

Hancock et al. [17] showed that satellite lidar could achieve regularly updated, con-
tinuous coverage by launching a constellation of 12 ICESat-2-sized satellites, allowing
change detection without the issues described above and being suitable for applications
that require continuous coverage such as flood modelling. This would be prohibitively
expensive; so technological developments are needed to increase the coverage of satellite
lidar per unit cost. This paper explores the use of alternative laser sources, and the novel
lidar modalities they require, to achieve accurate ground elevation measurements through
98% canopy cover (referred to as “98% beam sensitivity”), and whether they can achieve
this with a lower satellite power requirement than a solid-state laser.

2. Lidar Coverage

The coverage of a satellite lidar is controlled by the swath width, s. This can be given
as a function of the properties of the lidar satellite and data products [17]:

s =
PpayLe

Edet

A
2πh2 Qρτ2 r2(R + h)

3
2

R
√

GM
(1)

where Ppay is the satellite payload power, Le is the laser electric-to-optical efficiency (includ-
ing cooling), Edet is the minimum detected energy per laser shot needed for an accurate
measurement (related to signal-to-noise-ratio), A is the telescope area, h is the satellite
altitude, Q is the detector efficiency (quantum efficiency for a waveform detector or single
photon detection efficiency for photon counting), ρ is the surface reflectance, τ is the atmo-
spheric transmittance, r is the data product spatial resolution, R is the radius of the Earth,
M is the mass of the Earth, and G is the gravitational constant.

The swath width can be used within an orbital simulation tool to determine how
many satellites are needed to have a certain probability of measuring the whole Earth
within a given time frame [17], which can then be multiplied by the cost per satellite to
estimate the total constellation cost. Thus, the total system cost is inversely proportional to
s; so increasing the numerators or decreasing the denominators in Equation (1) leads to a
reduction in system cost.

The parameters in Equation (1) are controlled by the satellite platform (Ppay, A, h),
by the environmental conditions (τ, ρ) and by the data product properties (r). Some are
universal constants (G, M, R), and the rest are controlled by the lidar instrument. This
paper concentrates on the parameters controlled by the lidar instrument photonics and
signal processing. Those are:

• Le—controlled by the laser source;
• Q—controlled by the detector;
• Edet—controlled by the signal processing method and noise level.

This paper explores methods to increase Le by making use of the alternative laser
sources described in Section 2.2. The laser sources considered require different lidar
modalities to perform satellite remote sensing due to their much lower peak power limits
than currently in-orbit solid-state lasers, which then result in different values for Edet. These
are described in Section 2.3. The different lidar modalities also have different detector
requirements, described in Section 2.4.
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The number of satellites required to achieve global coverage in a time period Trepeat
has been derived by Hancock et al. [17] as

Nsat =

⌈
cδTrepeat

sTorbit

ln(1− pobs)

ln(cfrac)

⌉
(2)

where cδ is the Earth’s circumference at latitude δ, s is the swath width of a single satellite
(given by Equation (1)), Trepeat is the time period in which global coverage is achieved,
Torbit is the duration of a single orbit, pobs is the required probability of obtaining a valid
observation, and cfrac is the cloud cover fraction.

A lower required energy Edet leads to a larger swath width s and a lower number of
satellites Nsat for a given payload power per satellite. The number of required satellites
is also a direct driver of system cost. We will use the number of satellites required to
achieve complete coverage at the equator in Trepeat = 5 yr as the metric to compare different
lidar modalities. We assume a mean cloud cover of cfrac = 0.55 [17] and set a minimum
probability of cloud-free observation of pobs = 0.8.

The achievable swath width and satellite numbers for solid-state and diode lasers
under different lidar modalities will be explored and used to inform the choice of technology
for a future global lidar system mission.

2.1. Laser Requirements

There is a requirement on the minimum horizontal and vertical accuracy for the
measurements to be useful from a scientific perspective, and these have been clearly defined
by the GEDI mission [2]. The horizontal resolution is dictated by the size of the laser beam
footprint on the ground. This should be no more than 30 m in diameter to avoid slope
effects such as topographic blurring [18,19]. Furthermore, the signal-to-noise ratio (SNR)
of the ground return must be sufficient to be able to accurately measure ground elevation
under dense canopy (root mean square error less than 4 m). In particular, the requirement
is a 98% beam sensitivity—i.e., a 90% chance of detecting the ground under 98% canopy
cover [2], which is required to accurately determine the ground elevation, which in turn
is required to accurately determine the heights and profiles of targets aboveground. The
concept of beam sensitivity is explained in Hancock et al. [20], and further details are given
in Section 3.3. Finally, to clearly distinguish the ground from the canopy and understory,
the pulse must be able to resolve targets that are no more than 5 m apart [2]. This puts a
limit on the maximum pulse width [21]. Note that the ground elevation accuracy is not
directly related to the pulse width and can be much finer than the range resolution [21], but
if the pulse width is too long, the ground and canopy cannot be separated, and bias will
be introduced [22]. Because of the geometry of the lidar measurement, the emitted pulse
must travel twice the distance between source and target, and the range is calculated as one
half the travel time. The effective pulse width is therefore one half the pulse width emitted
by the laser. Unless explicitly stated otherwise, all pulse widths, lengths, and frequencies
stated throughout this paper are the properties of the effective (frequency doubled) rather
than the emitted pulse. Figure 1 shows how a sample profile is seen by lidars with effective
pulse widths of 15 ns and 30 ns (full-width half maximum (FWHM)). The longer pulse is
unable to resolve the ground in this example, and the detected ground would be placed at
the lowest peak which is now several meters above the true ground.
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Figure 1. This figure illustrates the effect of the pulse width on the measured return waveform (grey).
While short pulses (15 ns shown in blue) can resolve the ground (shown as a dashed line) in this case,
wider pulses (30 ns shown in orange) can no longer resolve close details, and the ground signal is lost.

2.2. Laser Sources

All current satellite lidars, outlined in Table 1, have used Q-switched solid-state lasers.
The GEDI, ICESat, CALIPSO, Aeolus and LITE lidars all used Nd:YAG lasers [2,23–27], and
ICESat-2 and CATS use a Nd:YVO4 laser [3]. These are 5 to 8% efficient [28,29], although
the highest end, 8% for GEDI, was achieved by external cooling on the International Space
Station. The highest efficiency lidar to include its own cooling is ICESat-2 at 5%. However,
efficiencies of up to 11% have been reported for Yb:YAG solid-state lasers [30] (although
not yet flown in space). If the efficiency can be raised without increasing cost, the coverage
of spaceborne lidar per unit cost can be increased. As can be seen from the table, these
systems give very high energies in single short pulses (typically a few nanoseconds or tens
of nanoseconds), resulting in peak powers of many hundreds of kilowatts.

Table 1. This table shows current and past operational spaceborne lidars and their properties. Note
that the LITE technology demonstrator is not included. All of these are based on solid-state laser
sources, mainly Nd:YAG.

Instrument Pulse Rate
(Hz)

Eshot
(mJ)

Number
Tracks

Pavg
(W)

Ppeak
(kW)

λ
(nm)

Detector
type a

D b

(cm)
H c

(km)
In Orbit

ICESat 40 100 1 4.0 8300 1064,
532

FW 80 600 2003–
2009

CALIPSO 20 110 1 2.2 2750 1064,
532

FW 100 705 2006–

CATS 10,000/
5000

1–2 3 15.0 1064,
532,
355

PC 60 400 2015–
2017

Aeolus 51 110 1 5.6 2750 355 FW 150 320 2018–
ICESat-2 10,000 1.2 6 12.0 400 532 PC 80 481 2018–

GEDI 242 10 8 7.3 320 1064 FW 80 420 2018–

a FW—full waveform, PC—photon counting; b telescope diameter; c altitude.

A potential alternative to these is provided by diode lasers. These have higher efficien-
cies than solid-state lasers at around 25%. This efficiency combines the diode laser efficiency
itself, which is typically around 50% [31] (p. 15), with the energy loss from thermo-electric
cooling (TEC) which is also typically around 50% (see, for example, [32]), which under
most conditions puts out waste heat (corresponding to the total power consumed) of about
double the heat removed from the object being cooled. As no diode lasers have been flown
in space, we will consider the best current R&D performance for both types of lasers, i.e.,
11% for solid-state lasers and 25% for diode lasers. Additionally, diode lasers are smaller
in volume and mass than solid-state lasers (which themselves typically include a diode
laser as the pump source, plus many other components) and are simpler to engineer for
resilience against shock and vibration. For that reason, while the diode lasers considered
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here have not yet flown in space, only relatively modest engineering changes would be
required to raise their technology readiness level (TRL). The solid-state laser described
in [30], also not yet flown, is therefore considered a reasonable point of comparison.

However, unlike solid-state lasers, diode lasers cannot be Q-switched to achieve high
pulse energies/peak powers due to the short upper-state lifetime of the semiconductor
gain material. Therefore, while diode lasers can be pulsed very quickly, the peak power is
typically close to the average power limit in Continuous Wave (CW) operation, unlike solid-
state lasers where peak powers for Q-switched pulses can be many orders of magnitude
greater than the CW average power limit. Diode lasers can achieve average powers on
the order of a few kilowatts, but such systems are based on stacks of multiple diode bars
resulting in poor spatial beam quality which renders such systems unsuitable for satellite
lidar as it would significantly increase the footprint size on the ground.

Therefore, for purposes of satellite lidar, we must look at classes of diode lasers
that offer good beam quality and moderate powers, namely those with tapered semi-
conductor structures. Such tapered lasers tend to have average (and hence peak) power
limits of around 5 W, although manufacturers are continuing to push these limits slowly
upwards, [31] (slide 15), and it may be possible to achieve peak powers several times
the CW damage threshold by overdriving the diode laser for only very short periods of
time [33]. Nonetheless, peak powers available from diode lasers with good beam quality
are still many orders of magnitude lower than those offered by solid-state lasers. As a
consequence, emitting sufficient energy for an accurate measurement from space would
take milliseconds. Therefore, standard lidar signal processing techniques such as Gaussian
decomposition [21] would not allow the accurate measurement of ground elevation or
vegetation To perform lidar remote sensing with diode lasers, alternative lidar modalities
are needed.

2.3. Lidar Modalities
2.3.1. Single Pulse

Traditional satellite lidars emit a single pulse of light towards the ground and record
the returned energy as a function of range to produce a lidar waveform. This can be
performed either with a full-waveform detector, as used on GEDI [2], or by counting
individual return photons on a photon-counting detector and then aggregating to make a
pseudo-waveform, as used in ICESat-2 vegetation products [34]. This is referred to in this
paper as single pulse lidar modality. As stated above, it requires peak powers of hundreds
of kilowatts and can only be achieved by solid-state lasers. As diode lasers cannot achieve
these peak powers, alternative modalities must be used. A sample pulse is illustrated in
Figure 2.
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Figure 2. Illustration of a standard Gaussian pulse as emitted by a solid-state laser. The pulse shown
here has a FWHM of 15.6 ns, corresponding to σ ≈ 2 m. The peak power is 320 kW for a 10 mJ pulse.
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2.3.2. Pulse-Train

One potential approach is to emit many short pulses in a sequence, each short enough
to allow the required range resolution (≤ 5 m) but not exceeding the peak power limits,
and then aggregate all returns to produce a pseudo-waveform. This is referred to as a pulse
train and is illustrated in Figure 3.
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Figure 3. Illustration of a pulse train with an unambiguous range of rua = 150 m and a range
resolution of rr = 3 m. Four repetitions are shown. In practice the number of repetitions will be
about 4000.

The pulse train is characterized by the individual pulse width, the distance between
pulses and the number of repetitions. The pulse width determines the range resolution rr,
while the distance between consecutive pulses determines the maximum unambiguous
range rua, i.e., the maximum vertical distance that targets can be apart while being unam-
biguously attributable to their respective pulse. This should be set to more than the largest
vertical distance between targets on the ground, i.e., at least the maximum expected canopy
height (roughly 100 m for the tallest tree on Earth).

The maximum possible number of repetitions is determined by the dwell time and the
unambiguous range:

Nrep =
cTdwell

2rua
(3)

For Tdwell = 4 ms and rua = 150 m, this gives 4000 repetitions. During this time, any
noise from background light or electronics will be integrated, making the noise effectively
4000 times the noise for a single pulse system.

2.3.3. Pulse Compressed Lidar (PCL)

Another technique with the potential to enable lidar remote sensing with a diode
laser is Pulse Compressed Lidar (PCL). PCL distributes the energy across the length of a
longer pulse (microseconds rather than nanoseconds long), giving a low peak intensity
but with a particular pulse shape or modulation pattern. This allows sufficient energy to be
emitted without exceeding the diode’s peak power limits. For a full-waveform lidar, a pulse
microseconds long would result in a range resolution too coarse for lidar remote sensing.
The pulse shape is specifically chosen to allow for signal reconstruction via cross-correlation
of the return waveform with the emitted pulse shape. In particular, this requires that the
autocorrelation of the pulse shape with a shifted version of itself is zero, allowing for a
perfect reconstruction of the signal in theory. The maximum possible resolution of the
restored signal is limited by the bandwidth of frequencies present in the emitted pulse (this
can be approximated to the peak frequency in most cases).

Frequency Chirps

One type of pulse used in PCL is a frequency chirp [35]. This is a sine wave whose
frequency is gradually ramped up (or down) from the start to the stop frequency.
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The chirped pulse is given by the following equation:

y(t) = sin
(

2π

(
ct2

2L
( fstop − fstart) + t fstart

))
(4)

where L is the sweep distance (e.g., 100 m), c is the speed of light and fstart and fstop are the
start and stop frequencies of the frequency sweep. Example chirps with a start frequency
of 1 MHz and peak frequencies of 100 MHz, 600 MHz, and 2 GHz are shown in Figure 4.

These chirps need to be sampled at a minimum of twice the peak frequency (Nyquist
frequency) to avoid aliasing. For this reason, higher peak frequencies require denser
sampling, resulting in a higher number of bins and a lower number of photons per bin,
potentially making higher frequencies less robust to noise.
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(a) Chirp (100 MHz)
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(c) Chirp (2000 MHz)

Figure 4. This figure shows three examples of chirped pulses with linear frequency sweeps from
1 MHz to 100 MHz (a); 600 MHz (b); and 2 GHz (c). Chirps are used to maintain high range resolution
even at longer pulse lengths.

Other Pulse Shapes

It is possible to use PCL with other pulse shapes. One alternative to frequency chirps
is Maximum Length Sequences, which are generated using a linear feedback shift register.
Their autocorrelation function is a Kronecker delta [36]. Another option are Zadoff–Chu
sequences which have similar autocorrelation properties [37,38]. While these pulse shapes
are designed specifically for optimal signal reconstruction via cross-correlation, our initial
trials suggest a poor performance in the photon counting case. Our analysis is therefore
focused on frequency chirps.

2.3.4. Phase-Based

Another technique to lower the peak power requirements is phase-based lidar. This
modulates the outgoing laser intensity with multiple frequencies (typically 3) and then
combines that with the return intensity. The phase shift between the output and return is
used to determine the range to a single target per laser footprint. Whilst this technique
is common for terrestrial lidar in artificial environments where the very small footprint
(typically millimetres) means that it is safe to assume that each laser shot hits only a single
target, it cannot retrieve multiple returns per shot. It is therefore unsuitable for use in
vegetated environments [39] or with large footprints. For this reason, phase-based lidar
will not be considered for use here.

2.4. Detectors

This paper considers two types of detectors, full-waveform [2] and photon counting [3].
Both have been used on satellite lidars, with full-waveform detectors on ICESat, GEDI,
CALIPSO and Aeolus and photon-counting detectors on CATS and ICESat-2. Whilst
photon-counting detectors such as single photon avalanche diodes (SPADs) and silicon
photomultipliers (SiPMs) have several advantages such as a higher sensitivity in a low-light
environment, lower dark count noise and no electronic noise of circuits and analog-to-
digital converters (ADCs), and thus potentially allow for higher SNRs for the same signal
energy, these detectors are subject to a so-called dead time [40]. The dead time refers to the
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time it takes for the detector element to be reset after detecting a photon before it can detect
another. During that reset time (typically tens of nanoseconds), the detector is effectively
blind to new photons. This leads to distortions that prevent accurate measurements and
makes the detector easier to saturate, inducing a first photon bias [40]. Full-waveform
detectors remain sensitive to all photons that arrive at the detector, although at the expense
of greater electronic noise. For this reason, only full-waveform detectors have been used so
far for detecting the ground through dense forests.

Both photon counting and full-waveform detectors are made from similar semi-
conductor materials and have a quantum efficiency of around 45% [28,41] (probability
of a photon hitting a detector element being recorded as an electrical signal). However,
photon-counting detectors can have an additional penalty to avoid distortions from dead
time. The risk of dead-time-induced distortions on photon counting systems can be avoided
in one of two ways: (1) by using low photon rates to reduce the chance of two photons
arriving within the dead time, (2) by using an array of detector elements to reduce the
chance of two photons hitting the same detector element within the dead time, or some
combination of the two. For systems with photon rates so low that there is a low probability
of two photons arriving within the dead time, a single detector element can be used, and
the detector can have a photon detection efficiency (PDE) of the quantum efficiency. When
systems require multiple detector elements to reduce dead time, the pixel elements cannot
be packed together perfectly due to the need for the pixel electronics. The fraction of the
detector array made up of the detecting pixels (rather than the supporting electronics) is
known as the fill-factor and introduces an additional photon loss.

As an example, ICESat-2 is expected to have a signal photon rate of 10 photons per
shot over ice and only 1–2 photons per shot over forest [3]. To allow 10 photons to be
detected without a dead time, it has a 4× 4-element detector with a fill-factor of 33%,
resulting in a PDE of 15% (product of quantum efficiency and fill-factor) [41]. In our case,
the shot energy of a comparable system would need to be increased to detect a ground
signal through dense canopy. The number of signal photons would then be high enough
even over forest to require a multi-element detector. A similar PDE of 14.2% at 500 nm with
a high fill-factor of 42.4% has been demonstrated in [42]. With the rapid development of
photon-counting detectors and the growing demand for lidar technology, the performance
of SPAD arrays has been improving in recent years. In 2020, a SPAD array with 31.4% PDE
at 850 nm with 3 V excess bias was reported [43]. A SPAD array with over 100,000 pixels,
29% PDE at 850 nm, 22% PDE at 905 nm and only 6 ns dead time was published in 2021
by Sony [44]. The timing modules and data processor are also integrated with the SPAD
array into a compact CMOS chip. Considering there is no need for that many pixels in
this remote sensing application, the PDE of this SPAD array has the potential for further
improvement. For single-element detectors, a PDE of up to 58% at 850 nm has been claimed
by Excelitas [45].

Throughout this paper, we use Q to denote the overall PDE, including quantum
efficiency and fill-factor. For our analysis, we assume a detector efficiency of Q = 58%
for full-waveform or single-detector element photon counting systems and Q = 31%
for photon counting systems that need to record multiple photons per laser shot. These
correspond to the efficiency of currently available best-in-class components at 850 nm.

2.5. Estimation of Noise Photons

As the beam sensitivity is a measure of the signal-to-noise ratio, it is determined
not only by the number of signal photons, but also the number of noise photons that
are detected in the same period. It is therefore essential to estimate the expected rate of
background photons as accurately as possible.

2.5.1. Lunar Noise

To minimize the number of background photons from solar radiation, the mission
is intended to be flown at night (in a terminator orbit) such that there is only lunar back-
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ground light to consider. For the full moon, a lunar surface radiation with a magnitude
4× 10−5 that of solar, an instrument filter width of 30 pm, moon at zenith, a satellite alti-
tude of 481 km and a circular telescope diameter of 0.8 m, then the lunar illumination is
6.6× 10−6 photons µs−1 for a wavelength of 850 nm (7.1× 10−6 photons µs−1 for 1064 nm)
and will scale proportionally to the field-of-view, bandpass filter width and telescope area,
and inversely with the square of satellite altitude. Total noise counts will then be the
product of this and the integration time.

nlunar,ICE = 6.6× 10−6 photons µs−1

2.5.2. Dark Count

Dark count, the noise inherent in the detector without illumination, was measured
by the ICESat-2 ATLAS instrument with the laser off and the door closed in the range of
4× 10−4 photons µs−1 to 8× 10−4 photons µs−1 [41], excluding the area covered by the
South Atlantic anomaly where counts peak at 0.02 photons µs−1. The dark count is partially
due to charged particles triggering the detector, and it is higher in northern latitudes. This is
independent of any emitting laser characteristics but may change with detector technology
such as the cross-sectional area of the sensor. For single element detectors, a widely used
commercial SPAD (the MPD’s PDM series) is able to provide a dark count rate (DCR) of
<50 cps (counts per second) [46]. For large-scale array detectors, a 192× 128 CMOS SPAD
array with 25 cps median DCR/pixel has been reported in 2019 [47]. These values are much
smaller than the rates recorded on ICESat-2. However, they are measured in a laboratory
environment shielded from the influence of cosmic rays. We therefore take the ICESat-2
rate as a more realistic value for a spaceborne detector.

ndark,ICE = 8× 10−4 photons µs−1

2.5.3. Atmospheric Scattering

The total background noise rate measured by ICESat-2 ATLAS at night was measured
from the 22× 106 14 km-length atmospheric profile observations from returns bounded
by the north and south poles and 2.8◦ W, 2.8◦ E longitude where the sun was at least 30◦

below the horizon. This produced a mean noise of 0.012 µs−1 with a standard deviation
of 0.017 µs−1. This is over an order of magnitude larger than the dark count, three orders
of magnitude larger than the estimated lunar noise and is highly variable. We therefore
hypothesize that this is predominantly due to backscattering of ICESat-2’s ATLAS laser
from the atmosphere and aerosols. To test this hypothesis, we extracted the number of
noise photons per ATLAS shot, which came to 0.115 noise photons per strong shot over
7.22 µs and 0.046 per weak shot over 7.34 µs. The dependence on beam power suggests
that these are signal photons being backscattered from the atmosphere at a rate of about
0.077 photons mJ−1. We are assuming that this absorption is proportional to the atmo-
sphere’s optical depth, which at ATLAS’s 532 nm is about 0.38 (calculated as an average
over scenarios using MODTRAN), at 850 nm is about 0.16 and at 1064 nm is about 0.12. In
particular, this noise contribution is independent of the specific detector and laser source
used and only depends on the wavelength in the way described here. It is therefore
appropriate to use measurements from ICESat-2 to calculate the expected atmospheric
scattering noise.

natm,ICE = 0.077 photons mJ−1

2.5.4. Total Noise Rate

To adapt the ICESat-2 noise rates for a system with different parameters, each of these
noise components need to be scaled as follows:

1. The lunar noise (nlunar) is proportional to h−2, ∆λ, A, and Q.
2. The dark count (ndark) is constant and does not scale with any of the parameters.
3. The atmospheric scattering (natm) scales with σλ, A and Q.
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The individual components are therefore:

nlunar = nlunar,ICE
h2

ICE
h2

∆λ

∆λICE

Q
QICE

σλ

σICE

A
AICE

(5)

ndark = ndark,ICE (6)

natm = natm,ICE
Q

QICE

σλ

σICE

A
AICE

(7)

Here, ∆λICE = 30 pm is the bandpass filter width of ICESat-2, λ is the wavelength of
the proposed instrument, σICE is the atmospheric optical depth at the wavelength used
by ICESat-2, σλ is the atmospheric optical depth at the proposed instrument wavelength,
QICE = 0.15 is the detector efficiency of ICESat-2, AICE = 0.5 m2 is the telescope area of
ICESat-2 and Eshot,ICE = 1.2 mJ is the shot energy of the ICESat-2 laser instrument.

The lunar background and dark count are rates of noise photons per time and must
be multiplied by the total integration time T to give the total number noise photons. The
atmospheric scattering noise only depends on the total laser energy Eshot emitted but not
on T. The total noise is then calculated as:

Nnoise = (nlunar + ndark)T + natmEshot (8)

Table 2 lists the resulting noise rates for the three lidar modalities introduced in
Section 2.3. As well as the longer integration time, diode lasers have less stable wavelengths
than solid-state and so require wider bandpass filters to avoid losing laser energy. The
total number of noise photons will then depend on the integration time T and the laser
energy Eshot.

Table 2. This table shows a summary of the expected noise photon rates and the total noise photon
counts for the three lidar modalities introduced in Section 2.3 at a wavelength of 850 nm. The noise
rate depends on the detector efficiency Q, the bandpass filter width ∆λ, the telescope area A and the
detector integration time, which itself depends on the number of pulse repetitions.

Laser Source: Solid-State Diode
Lidar Modality: Single Pulse Pulse Train PCL

Q 0.31 0.58 0.58
∆λ 30 pm 1 nm 1 nm
Nrep 1 4000 4000
Integration time 1 µs 4 ms 4 ms
Noise rate/µs−1 8.1× 10−4 1.32× 10−3 1.32× 10−3

Noise rate/mJ−1 0.067 0.125 0.125

Figure 5 shows the resulting number of expected noise photons as a function of the
number of signal photons (as a proxy for Eshot). The noise varies with the laser wavelength
because of the photon energy and differing optical depth of the atmosphere. The figure
therefore shows the noise rates for three wavelengths: 532 nm (ICESat-2), 850 nm (the
proposed wavelength for a diode laser instrument) and 1064 nm (GEDI). The numbers
shown are for a 4 ms integration time, i.e., the pulse train or PCL modalities.

The lines are calculated from Equation (8) with the constant offset corresponding to
the lunar background Equation (5) and dark count Equation (6). The gradient of the lines,
i.e., the energy dependent component, is driven by atmospheric scattering and varies with
the optical depth of the atmosphere for different wavelengths.
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Figure 5. This figure shows the total number of noise photons for an integration time of 4 ms as a
function of the number of signal photons as calculated from Equation (8) for three different laser
wavelengths. The noise is made up of lunar background, dark count and atmospheric scattering.
The resulting equations are: N = 2.03 × 10−3 µs−1T + 0.298 mJ−1Eshot for 532 nm, N = 1.32 ×
10−3 µs−1T + 0.125 mJ−1Eshot for 850 nm, N = 1.19× 10−3 µs−1T + 0.094 mJ−1Eshot for 1064 nm.

While background noise is an experimental factor that can potentially be reduced by
careful selection of the laser wavelength, optical bandpass filters and other means, there is
an additional source of noise called shot noise. Shot noise is an intrinsic property of the
discrete nature of light and results in additive noise that follows a Poisson distribution with
a standard deviation of

√
N. For large N, it can be approximated by a Gaussian distribution.

2.6. Energy and Power Estimation

The detected energy Edet is directly proportional to the number of detected photons
Nphotons:

Edet = h
c
λ

Nphotons (9)

where h is the Planck constant, c is the speed of light, and λ is the wavelength. The shot
energy Eshot that must be emitted to detect an energy Edet depends on the detector efficiency
Q, the satellite altitude h, the telescope area A, the surface reflectance ρ and the atmospheric
transmittance τ:

Eshot =
Edet
Q

2πh2

A
1

ρτ2 (10)

The average power Pavg and the peak power Ppeak are calculated as described in
Appendix A.

3. Methods

All results for this paper were obtained from simulations taking several dense Airborne
Laser Scanning (ALS) datasets as input and producing the expected waveforms from a
spaceborne instrument as output.

3.1. Lidar Simulator

A satellite lidar simulator was originally developed for the ESA A-Scope mission [22]
and subsequently improved for the NASA GEDI mission [20] following the method of Blair
and Hofton [48]. This has already been used to simulate traditional waveform lidars
and photon counting systems [11]. The simulator is driven by high-resolution point
clouds collected from ALS data and applies the spaceborne lidar footprint shape, pulse
shape, detector response and signal and noise level to create a synthetic lidar signal.
Signal processing algorithms can be applied to these synthetic lidar signals to extract
measurements in the same way as real spaceborne lidar data, allowing the calibration
of satellite data [11,49] and explorations of the accuracies of future missions [4]. The
accuracy of the simulator has been validated, both in terms of retrieved metric values and
in terms of retrieved metric accuracy as a function of beam sensitivity [20]. We used this
simulator to quantify the performance of a spaceborne lidar with photon counting and PCL
(photon-PCL). The simulator can be used with any laser pulse shape, including the chirped
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pulse used in PCL. The only new modifications needed were to add the cross-correlation
algorithm and to ensure that the performance of a photon-PCL with signal and noise level
was correctly treated. Figure 6a shows a simulation of a traditional full-waveform signal
with a Gaussian laser pulse. The Gaussian pulse can be replaced by a chirped pulse as
shown in Figure 6b. Applying that to a simulated waveform results in the return waveform
shown in Figure 6c. This is the return that would be measured by a full-waveform detector
with no noise. To convert this to a photon-PCL signal, that noise-free full-waveform
simulation is taken as the probability distribution function for returned photon ranges (i.e.,
there is a higher probability of getting a return from an elevation with higher intensity)
and the number of photons selected from it. The total number of photons per laser shot is
selected from a Poisson distribution with the mean specified by Equation (10), converted
to number of photons. Within the simulator, the noise rate (dark count plus background
light) is defined in terms of noise photons per microsecond, and that number of photons
(again selected from a Poisson distribution about that mean) is scaled by the detection
window size and added at random ranges. The resulting train of photons is binned to
make a pseudo-waveform, as in Figure 6d (showing an example for 4000 photons), and
shot noise is added by applying white Gaussian noise to each bin with a standard deviation
equal to the square root of the number of photons in that bin.
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Figure 6. This figure demonstrates the convolution and cross-correlation steps in recovering the
waveform using a Pulse Compressed Lidar (PCL): (a) shows the full waveform, i.e., the true point
density we are trying to observe; (b) shows the emitted pulse, a linear chirp; (c) shows the convolution
of (a) with (b) as this is what would be measured by a full-waveform detector applying PCL; (e) is
the reconstruction of the original signal from the cross-correlation of (c) with the pulse shape (b);
(d) shows the same return signal in (c), but measured with a photon couting rather than a full-
waveform detector; and (f) shows the reconstructed signal from (d).

The pseudo-waveform in Figure 6d is what the photon-PCL lidar would measure
for a single footprint. To extract measurements of the ground from this, it must be cross-
correlated with the original pulse (Figure 6b). Then it can be treated like a traditional
full-waveform signal, removing background noise and smoothing and identifying ground
returns. Cross-correlating the full-waveform return (Figure 6c) with the pulse gives the
retrieved waveform in Figure 6e, whereas cross-correlation with the photon counting
returns results in the signal shown in Figure 6f. It can be seen that the waveform in
Figure 6e is very similar to what would have been retrieved by a full-waveform lidar with



Remote Sens. 2022, 14, 2426 13 of 28

the energy emitted in a 15.6 ns long-pulse (necessitating an 8% efficient solid-state laser) in
Figure 6a, except for cross-correlation artifacts (ringing) at the tails of the signal. Both of
these should give similar ground elevation and canopy height estimates when decomposed
into Gaussians and the lowest taken as the ground elevation as demonstrated in Figure 7.
The photon counting result in Figure 6f exhibits a lot more noise-like artifacts due to the
signal discretization, illustrating why a large number of return photons may be required
for reliably distinguishing the ground signal from the background noise. The simulator
code is available open-source from: https://bitbucket.org/StevenHancock/gedisimulator
(accessed on 4 April 2022.)
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Figure 7. This figure demonstrates the ground extraction from Gaussian decomposition for (a) the
full waveform case and (b) the waveform PCL case. The waveforms are shown in blue, the Gaussian
decomposition as a dashed black line, the extracted ground as a solid gray line and the extracted
canopy height as a solid green line. The ground and canopy height are computed as the mean of the
lowest and highest Gaussian in the decomposition, respectively.

3.1.1. Simulator Validation

The primary function of the simulator is to determine the minimum signal strength
needed for an accurate measurement from a spaceborne photon-PCL instrument. For
the simulator predictions to be reliable, the simulated waveforms must show the same
measurement accuracy as a function of signal strength and noise rate as observed in the
real instrument. To determine whether the simulator was realistic enough to answer
this question, we repeated the analysis in Hancock et al. [20] and performed a validation
experiment comparing the simulated lidar signals against those measured by Fraunhofer
CAP’s bench instrument.

The bench instrument used a pulse chirp with a peak frequency of 125 MHz spread
over a 60 m sweep. This was reflected from a hard target, and the returned signal was
recorded by a photon-counting detector. Repeat measurements were made and combined
to allow large photon counts while avoiding detector dead time or first photon bias. The
total number of signal photons and the average background photon rate (from background
light and electronic noise) were recorded. In the experiment, signal and background photon
rates were controlled by laser voltage and exposure time, where a higher laser voltage
yields a higher signal photon number and a longer exposure time increases both signal and
background photon rates. The noise photon rate in this case only depended on exposure
time and was 20, 130 and 200 total photons for exposure times of 5 µs, 50 µs and 100 µs,
respectively. Higher effective noise rates resulted in cases where the signal was taken as a
mean of repeated individual measurements.

Based on the pulse shape as well as signal and noise photon rates, repeated simulations
were performed to replicate the experimental setup. Both the experimentally measured
and simulated retrieved lidar signals were passed through the same signal-processing
algorithm (cross-correlation), and the resulting SNR was calculated from both.

https://bitbucket.org/StevenHancock/gedisimulator
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3.1.2. Signal Processing

The ground-finding algorithm in the lidar simulator relies on a series of signal pro-
cessing steps to reduce the noise. The nature and scale of these denoising filters can be
controlled by several tuning parameters:

varScale controls the signal detection threshold as a number of standard deviations above
background [50];

minWidth controls the minimum number of consecutive bins that must lie above the
threshold [50];

sWidth sets the smoothing width in meters;

hann applies a Hann filter with the specified number of bins [51].

Additional parameters exist for the PCL case, where smoothing can be applied before
or after the cross-correlation step. The optimum set of denoising steps depends on the
signal-to-noise ratio and will in general be optimized independently for different conditions
on the ground.

For the results presented in this paper, all simulations were performed over a grid of
these tuning parameters. The explored parameter space consists of sWidth from 0 to 1 (in
meters), varScale from 1.5 to 7 (in standard deviations) and hann from 1 to 17 (in number
of bins). The minWidth parameter was largely superseded by the Hann filter. All results
presented in this paper reflect the optimum found across this parameter grid.

3.2. ALS Datasets

For calibration of the minimum detectable energy, the simulator was run over six ALS
datasets with a variety of canopy cover, canopy height, and ground slope distributions.
The datasets and their properties are summarized in Table 3.

Table 3. This table gives a summary of the canopy and ground properties for the ALS datasets used
for the simulations. Each property is given as mean ± standard deviation.

Site Biome Canopy
Cover (%)

Ground
Elevation (m)

Ground
Slope (Degree)

Canopy
Height (m) Reference

Sonoma Mediterranean Forests, Woodlands and
Scrub 65 ± 30 208 ± 80 18 ± 11 25 ± 14 [52]

La Selva Tropical and Subtropical Moist
Broadleaf Forests 68 ± 36 77 ± 35 10.0± 9.1 22 ± 12 [53]

Bartlett Temperate Broadleaf and Mixed
Forests 84 ± 20 510 ± 170 16.1± 9.4 19.3± 5.2 [54]

Wind River Temperate Conifer Forests 75 ± 18 680 ± 240 18 ± 12 32 ± 12 [54]

Robson
Creek

Tropical and Subtropical Grasslands,
Savannas and Shrublands 97.7± 3.5 860 ± 140 22 ± 10 32.7± 5.6 [55]

Oak Ridge Temperate Broadleaf and Mixed
Forests 63 ± 39 272 ± 31 9.3± 7.7 19 ± 11 [54]

From each dataset, a stratified sample of 2000 footprints was randomly selected across
100 canopy cover strata, with an equal number of samples in each 1% bin. Even though the
canopy cover distributions of all sites were non-uniform, sufficient footprints in each strata
were available for all sites except for Robson Creek. Due to the high forest density at this
site, very few footprints exhibit a canopy cover of less than 80%.

Figure 8 shows five simulated sample waveforms at different canopy covers, with the
true ground marked as a dashed line. This illustrates how the ground signal is generally
decreasing with increasing canopy cover. The true ground is obtained from the center of
gravity of the ALS ground points and may therefore carry a small error in itself if ground
points are misclassified.
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Figure 8. This figure shows five examples of simulated waveforms for different canopy cover
percentages. The ALS point density is shown in gray, the simulated waveform in blue, and the true
ground as a dashed line. The relative intensity of the measured ground signal decreases with higher
canopy cover as fewer signal photons pass through the canopy to be reflected off the ground.

3.3. Beam Sensitivity Calculation

The beam sensitivity is defined as the canopy cover limit at which the ground can still
be reliably detected. It is therefore a dimensionless quantity between 0 and 1. There are two
ways to estimate the beam sensitivity in our simulations. The first approach is to estimate it
theoretically from the signal-to-noise ratio of the ground return. In an alternative approach,
we can estimate it empirically from a graph of the ground error distribution against canopy
cover percentage.

3.3.1. Estimation from Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) of a waveform lidar can be expressed as the beam
sensitivity, which gives the canopy cover at which a ground return will have a 90% chance
of being detectable above the background noise. This can be calculated analytically from a
noised waveform from the integral of the signal return and the statistics of the background
noise (whether background light, electronic noise or signal processing artifacts) [20].

To analytically calculate it, first a noise threshold must be set to give a certain probabil-
ity of avoiding a false positive from noise (set as 95% in this case). Then the amplitude that
a single return must extend above to give less than a certain probability of a false negative
(set as 10% here) is calculated. The width of that return is used with the amplitude to find
the integral of that single return. The ratio of this single return integral to the integral of the
total signal gives the minimum fraction of total return energy that can be contained within
a single feature (such as the ground return) and detected with that probability of a false
positive and negative.

To calculate this, we need the distribution of the noise intensity after any smoothing
and minimum widths have been applied. The noise threshold is then set at the 95% point
on the cumulative integral of the noise distribution. Next, the amplitude of a ground return
above that is needed. This amplitude difference is set as the 10% point on the cumulative
integral of the noise distribution. The amplitude of the single return, As, is then equal to
the sum of these two values.

Finally, the width of the single return is needed to calculate the integral (see Figure 2).
The width of the ground return is controlled by the ground slope, the width of the lidar’s sys-



Remote Sens. 2022, 14, 2426 16 of 28

tem pulse and any smoothing that has been applied to the signal. From Hancock et al. [20]
(Equation (7)), the ground return’s effective width σeff is given by:

σeff =
√

σ2
p + σ2

s + σ2
f tan2 θ (11)

where σp is the system pulse width, σs is the smoothing width applied, σf is the footprint
width, and θ is the ground slope. For a single pulse or a pulse train lidar, σp is equal to
the standard deviation of the pulse shape (a single repetition for a pulse train). For a PCL
lidar, σp is the width that would result from a perfectly noise-free cross-correlation with the
convolution of pulse with a Dirac delta. For a cross-correlated chirped pulse, pulse width,
σp, is theoretically controlled by the frequency bandwidth within the chirped pulse by:

σp =
c

∆ fchirp
(12)

where c is the speed of light, and ∆ fchirp is the difference between the pulse’s peak and
minimum frequency (can be approximated as equal to the peak frequency).

Once the width of the ground return is defined by Equation (11), the integral, Is,
can be found assuming a Gaussian return (which a lidar return is likely to be close to,
after cross-correlation or smoothing).

Is = σeff As
√

2π (13)

The beam sensitivity, bs, is then:

bs = 1−
Is

ρv
ρg

I0
(14)

where I0 is the integral of the waveform above mean noise level, and ρv/ρg is the ratio of
the canopy and ground reflectance. I0 can be calculated for a range of smoothing widths
and minimum feature widths to select the optimum parameter configuration. For photon-
counting detectors, only discrete whole numbers of photons can be detected. To prevent
non-physical decimal numbers of photons being used to estimate a beam sensitivity, the
beam sensitivity is truncated to zero if there is less than a 90% probability of detecting at
least one ground photon.

3.3.2. Estimation from Ground Error Distribution

As a sanity check, we can extract the beam sensitivity empirically from simulation
data by fitting a curve to a scatter plot of the ground error vs. canopy cover. The beam
sensitivity can then be calculated from the fit parameters and a ground error threshold. An
example is shown in Figure 9, where a curve with the equation f (x) = a + eb(x−c) is fitted.
The error threshold for the ground detection is determined by calibrating the extracted
beam sensitivity against benchmark simulations with known beam sensitivity, as detailed
in Appendix B.

In general, the results from this method are considered an empirical validation of the
results obtained from the SNR, and it is the latter that forms the basis for our quantitative
comparative analysis.
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Figure 9. This figure demonstrates the beam sensitivity extraction for a PCL scenario with
5000 photons. The blue markers represent returns from individual footprints, and the black line is
the resulting curve fit. With the threshold set to 4 m, the extracted beam sensitivity is 93.6%.

3.4. Experiments

Using the lidar simulator, we ran a series of experiments to assess the possible com-
binations of laser source (Section 2.2) and laser modality (Section 2.3) in terms of their
beam sensitivity and ultimately their energy and power requirements. While all of our
simulations assume a photon-counting detector, we compare the final results to the true
parameters of the GEDI mission as a representation of a solid-state laser with full-waveform
detector. We assume a telescope diameter of 80 cm (area of ≈0.5 m2) for all simulations.
This corresponds to the telescope diameter for both ICESat-2 and GEDI (see Table 1).

Each of the cases outlined below was simulated for six samples of 2000 waveforms
each corresponding to the six ALS datasets and for a range of signal photon numbers. The
beam sensitivity was then calculated for each case and each photon number, resulting in a
curve of beam sensitivity as a function of photon count. From these curves, we extracted
the required number of photons to achieve the target beam sensitivity of 98% and calculated
the corresponding energy and power requirements. Finally, we compared all scenarios
based on these requirements.

3.4.1. Solid-State Lasers

Because solid-state lasers are not limited by their peak power, the only modality that
we tested for this laser source is a conventional single pulse (Section 2.3.1) with no pulse
repetition (Nrep = 1). The case of a full-waveform detector was taken from the literature
values for GEDI’s coverage beams [2]. For the photon-counting detector case, the detector
integration time in this case is about 1 µs, which at a noise photon rate of 0.012 µs−1 gives
a total expected number of noise photons of 0.012. As discussed in Section 2.4, the high
signal photon rate requires the use of a photon detector array with a PDE of Q = 0.31.

As an additional check of the estimated powers derived from the simulator, the
ground elevation errors in ICESat-2 data were analyzed as a function of the number of
ground photons over Sonoma County. ICESat-2 photons were taken from the ATL03 Global
Geolocated Photon Data product, version 4 [56], and any geolocation offsets relative to the
ALS data were corrected using the PhoREAL package [57]. For each ICESat-2 footprint, an
ICESat-2 waveform was simulated, divided into ground and canopy components, and used
to reclassify ATL03 photons as ground, canopy or noise. Only ICESat-2 segments that had
similar noise rates to the nighttime rates used here were analyzed (0 µs−1 to 0.024 µs−1).
The numbers of ground photons were scaled by a factor of 50 to give the total number of
signal photons needed to detect the ground through 98% canopy cover, and the root mean
square ground elevation error calculated against ALS data.

3.4.2. Diode Lasers

For the diode laser, we tested a pulse train modality (Section 2.3.2) and PCL (Section 2.3.3),
each with a number of pulse repetitions of Nrep = 4000. This is the maximum number
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of repetitions to allow for an unambiguous range of rua = 150 m within the 4 ms dwell
time (considering the two-way distance). Because of the low signal photon rate with a
low-power diode laser, these cases do not require a photon detector array, and the detector
efficiency is Q = 0.58. The detector integration time for both modalities is 4 ms.

4. Results
4.1. Simulator Validation

As described in Section 3.1.1, the PCL mode of the lidar simulator was validated
against empirical results from laboratory experiments. Figure 10 shows an example pulse-
compressed waveform for three different signal photon rates, along with the corresponding
results of the cross-correlation.
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Figure 10. This figure shows the measured photon returns (a,c,e) and the corresponding cross-
correlations (b,d,f) for the laboratory validation of the lidar simulator. Experimental results are shown
in black, the simulated results in red. The faint gray lines represent the individual laboratory mea-
surements, which were added up to yield the black curves: (a) PCL waveform return (432 photons);
(b) Cross-correlation (432 photons); (c) PCL waveform return (737 photons); (d) Cross-correlation
(737 photons); (e) PCL waveform return (10,139 photons); (f) Cross-correlation (10,139 photons).

A qualitative comparison of these examples shows good agreement between experi-
ment and simulation, especially for high photon counts. Discrepancies at very low photon
rates are to be expected as an artifact of the noisy signal. For a more quantitative validation,
we calculated the SNR for each experimental measurement and corresponding simulation
as the ratio between the peak intensity and the standard deviation of the background noise.
Figure 11 compares the SNR distributions between experiment and simulation. Figure 11a
shows the SNR as a function of number of photons, whereas Figure 11b shows a direct
comparison of experimental and simulated SNR.
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Figure 11. SNR. This figure shows an analysis of the experimental and simulated SNR when mea-
suring a single hard target using PCL: (a) shows the SNR distribution as a function of number of
photons; and (b) shows a linear regression of simulated and experimental SNR, where each marker
represents one number of photons. The correlation coefficient is 0.86. (a) SNR as a function of number
of photons; (b) Simulated and experimental SNR.

From Figure 11b, the correlation coefficient was computed as 0.86, indicating a strong
correlation between the experimental and simulated SNR. While there is a small disagree-
ment between the SNR of simulation and experiment, a perfect correlation is prevented
by the randomness inherent in photon counting. Given the validation study, we can
now be confident that the simulator is able to assess the accuracy of a future spaceborne
PCL system.

4.2. Solid-State Lasers

Solid-state lasers represent the default for current space-borne applications. As dis-
cussed in Section 2.2, they allow for a high power output and thus only require a single
pulse to collect sufficient energy. This means the overall noise rate is low and the SNR high.

Photon Counting

Having calibrated the beam sensitivity extraction for the full-waveform Gaussian
pulse case, we could calculate the beam sensitivity for photon counting as a function of the
number of detected photons (Figure 12). A single pulse requires high peak power to pack
sufficient energy into the short pulse duration and thus is only feasible with a solid-state
laser. The short integration time also means that the number of noise photons is near zero.
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(b)
Figure 12. This figure shows the beam sensitivity as a function of the number of signal photons for a
solid-state laser operating with a single pulse and an accordingly low noise rate. Around 60 photons
are required to reach 98% beam sensitivity. (a) Computed from signal-to-noise ratio; (b) Empirically
estimated from ground error.
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For low photon numbers, the beam sensitivity computed from the SNR accounts for
quantization effects by requiring a probability of at least 90% of encountering one whole
ground photon (see Section 3.3.1). In this case, the SNR method predicts a beam sensitivity
of 98% from around 60 photons. The estimate from the ground error (Figure 12b) predicts
that only 20 photons are required to achieve 98% beam sensitivity. At such low photon
numbers, however, noise near the true ground may be mistakenly classified as ground,
making the ground error estimate unreliable. This was confirmed by the analysis of real
ICESat-2 data, which also showed that ground elevation RMSE dropped to sub-3 m for 60
or more signal photons per laser shot.

From theoretical considerations, at 98% canopy cover and zero noise at least 50 photons
should be necessary to receive one ground photon, on average. In general, the ground error
estimates are treated as a sanity check and validation of the SNR results which provide a
more theoretical beam sensitivity estimate.

At a wavelength of λ = 850 nm, 60 photons correspond to a detected energy of
Edet = 0.014 fJ.

4.3. Diode Lasers
4.3.1. Pulse Train

One alternative laser modality is the pulse train approach. For the sake of the simu-
lations, a pulse train may be treated the same way as a single pulse, except that the same
energy (i.e., number of signal photons) is collected over a longer integration time through
pulse repetition, also causing an accumulation of noise photons.

As for the solid-state case, Figure 13 shows the beam sensitivity as a function of signal
photon number for all six sites. The number of noise photons depends on the integration
time (i.e., number of repeats), the bandpass filter width, the detector efficiency, and the
laser energy, as described in Section 2.5.
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Figure 13. This figure shows the beam sensitivity as a function of the number of signal photons
for a diode laser pulse train with 4000 repetitions. Because of the larger number of noise photons
compared to the solid-state laser, around 115 photons are required to reach 98% beam sensitivity.
(a) Computed from signal-to-noise ratio; (b) Empirically estimated from ground error.

While in principle very similar to the single-pulse approach, in the case of a solid-state
laser, the much larger number of detected noise photons means that a significantly higher
number of signal photons is required for the ground to be detectable at the low SNR.
The sensitivity curves computed from the SNR (Figure 13a) show that 115 photons are
required to achieve 98% beam sensitivity with the pulse train approach. This corresponds
to a detected energy of 0.027 fJ. The sensitivity curves from the ground error distribution
(Figure 13b) exhibit a similar shape and order of magnitude of the photons required but
differ in their absolute values and show more variation across sites. This is expected as the
ground error estimation depends both on the quality of the assumed true ground and the
performance of the ground detection algorithm.
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4.3.2. PCL

All results presented in this section are for PCL with frequency chirps as introduced
in Section 2.3.3. While we have tested other pulse shapes, including maximum length
sequence (MLS) and Zadoff-Chu sequences, we have found no improvement over the
frequency chirp. In particular, we used a chirp with a sweep distance of 100 m (333 ns) and
a start frequency of 1 MHz. We then investigated the effect of varying the stop frequency
between 100 MHz and 2 GHz.

Figure 14 shows the beam sensitivity curves for PCL with frequency chirps. Eight
different peak frequencies were tested, ranging from 100 MHz to 2 GHz, and are represented
in the figure as different shades of purple (darker shades represent higher peak frequencies).
The data shown is for the La Selva site (Table 3).
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Figure 14. This figure shows the beam sensitivity as a function of the number of signal photons for a
diode laser in PCL mode with frequency chirps, for a range of peak frequencies. There are 4000 pulse
repetitions. (a) Computed from signal-to-noise ratio; (b) Empirically estimated from ground error.

There is a clear increase in beam sensitivity for higher frequencies, although the
increase is starting to become marginal at 1 GHz. Frequencies higher than 2 GHz have
not been tested, both because of diminishing returns and because such frequencies are
stretching the engineering limits for laser modulation.

Figure 15 shows the beam sensitivity curves for all six sites at 2 GHz.
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Figure 15. This figure shows the beam sensitivity as a function of the number of signal photons
for a diode laser in PCL mode with 2 GHz frequency chirps for all sites. In this case, more than
10,000 photons are required to reach 98% beam sensitivity. (a) Computed from signal-to-noise ratio;
(b) Empirically estimated from ground error.

At Sonoma and Wind River, the comparatively large tree heights (see Table 3) increase
the possible magnitude of ground errors as compared to sites with smaller tree heights,
leading to lower sensitivites when estimated from the ground error (Figure 15b). While
the ground error estimates plateau at a lower maximum beam sensitivity, they support the
conclusions that about 10,000 photons are required to reach the target sensitivity of 98%.
For the La Selva site, the number of photons is 11,400, corresponding to a detected energy
of 2.66 fJ.
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4.4. Comparison of Edet Values

The results for the solid-state laser, diode laser with pulse train and diode laser with
PCL from the previous sections are summarized for a direct comparison in Table 4. In addi-
tion, the table contains a full waveform column for the solid-state laser, which corresponds
to the GEDI configuration, except the system parameters such as payload power, altitude
and telescope area have been matched to the three photon counting scenarios. GEDI has
been designed to have 98% beam sensitivity and so serves as a benchmark.

Table 4. This table compares the different laser modalities in terms of their expected signal and noise
photon counts as well as the required average and peak laser output power.

Source Solid-State Diode

Modality Single Pulse Pulse Train PCL

Detector Full Waveform Photon
Counting

Photon
Counting

Photon
Counting

sc
en

ar
io

co
nd

it
io

ns


Q 0.58 0.31 0.58
Le 0.11 0.25
Nrep 1 4000
∆λ 0.7 nm 30 pm 1 nm
T ≈1 µs ≈1 µs 4 ms

at
98

%
se

ns
it

iv
it

y



Nphotons 1500 a 60 115 11,400
Nnoise n/a 0.02 5.3 8.4
Edet 0.28 fJ 0.014 fJ 0.027 fJ 2.66 fJ
Eshot 2.6 mJ b 0.25 mJ 0.25 mJ 25.2 mJ
Ppeak 79.7 kW b 7.5 kW 1.9 W 14.9 W
Pavg 0.66 W b 0.06 W 0.06 W 6.3 W
swath 553 m 5898 m 13,085 m 132 m
Nsat 4 1 1 15

a This number is calculated from the known Edet and wavelength of GEDI. b The actual values on GEDI are
slightly higher at Eshot = 5 mJ, Ppeak = 160 kW and Pavg = 1.2 W due to optical inefficiencies.

In this comparison, the solid-state photon counting setup still has the lowest required
Edet by some margin (0.014 fJ). However, when considering the laser efficiency Le and the
detector efficiency Q, the diode laser in pulse train mode now gives the widest coverage
with a swath width of 13,085 m compared to a solid-state laser that can achieve a swath
width of 5898 m in photon counting mode and 553 m in full waveform mode (GEDI).
It therefore requires only one satellite for global coverage within 5 years, the same number
as for a solid-state laser with a photon-counting detector, and less than the four satellites
required in full waveform mode. Because the PCL mode requires significantly higher
numbers of signal photons to achieve the same beam sensitivity, it has the highest required
detectable energy and the lowest swath width and is therefore the worst contender by
this metric. The diode laser also has a lower required power than the the solid-state laser.
However, the maximum possible output power is also the main limitation for this type
of laser.

5. Discussion

We have assessed three configurations of a space-borne lidar instrument in detail:
(1) a solid-state laser operating in a single-pulse mode with photon-counting detector, (2) a
diode laser operating in a pulse train mode with photon-counting detector, and (3) a diode
laser in PCL mode, also with photon counting detector.

The goal here was to investigate the feasibility of a diode laser for applications in
space-borne lidar instruments because of its up to five times higher laser efficiency. We
have found that the minimum detectable energy Edet necessary for ground detection at up
to 98% canopy cover is 0.014 fJ for the solid-state laser, 0.027 fJ for the diode laser with pulse
train and 2.66 fJ for the diode laser with PCL. When taking into account the laser efficiency
Le and the detector efficiency Q, we can compare the number of satellites required for
global coverage within five years between the configurations, and we end up with a single
satellite for the solid-state laser and for the diode laser with pulse train and 15 satellites for
the diode laser with PCL.
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The diode laser in pulse train mode achieves the greatest overall coverage due to the
higher laser efficiency and can provide two times larger coverage compared to a solid-state
laser at effectively the same mission cost (13,085 m compared to 5898 m swath width for a
single satellite).

Another consideration is the overall power requirement. This is the main limitation of
the tapered diode lasers as they can typically only operate at powers between 5 and 8 W [31].
The pulse train approach has the lowest peak power requirement at 1.9 W, followed by
14.9 W for PCL and compared to 7.5 kW and 79.7 kW for the solid-state laser in photon
counting and full waveform mode, respectively. While the peak power for the pulse train
is well within the current technological capability, the power required for the PCL mode
remains beyond what is currently feasible with tapered diode laser technology.

The results for the diode laser are based on a 25% laser efficiency as derived in
Section 2.2, which takes into account the electrical-to-optical efficiency of the diode laser
itself and the efficiency of the thermo-electric cooler used to extract waste heat from the
laser. However, the overall efficiency may be lower depending on the efficiency of the
driver electronics providing the electrical power to the laser itself due to the challenges
of switching multi-amp currents on nanosecond timescales. This will require attention in
future phases of development to realize the potential of diode lasers for this application.
Thermal management solutions will also need to be tailored for satellite compatibility,
but this is not expected to impact efficiency significantly.

Our estimates are based on the assumption that we can in fact operate a diode laser
at the required peak powers. Coherent Inc., one of the major manufacturers of tapered
amplifiers, has reported peak powers of 25 W for 50 µs duration pulses at 976 nm with
50% duty cycle [31] (slide 17), and it is possible that even higher peak powers could be
achieved with shorter pulse durations such as the ∼30 ns pulses required for the present
application [33]. This makes the pulse train approach a feasible modality with its peak
power requirement of 1.9 W. Therefore, a diode-laser-based satellite lidar system may soon
be realizable with currently available diode laser technology.

It is important to note that this study has focused entirely on energy/power consid-
erations. The swath width achieved in practice may be limited by other factors such as
the number of lasers and detectors that can be deployed on a practical satellite platform.
Future phases of the work will examine these system-level trade-offs in detail to identify
the most cost-effective approach. Such challenges affect both solid-state- and diode-laser-
based systems, with diode lasers taking up less volume and contributing less mass, while
solid-state lasers, with their high pulse energies may provide multiple ground tracks from
a single beam that is split. The balance of these benefits and constraints, along with the
capabilities of different satellite platforms and associated launch costs, will determine the
optimal solution.

6. Conclusions

This paper was motivated by the need to improve spaceborne lidar coverage and by
the notable absence of diode lasers in spaceborne lidar instruments. Solid-state lasers are
currently the preferred choice due to their ability to operate at high powers, a necessity
for emitting high-powered pulses as required for receiving sufficient return energy when
emitting from space. While diode lasers cannot currently emit sufficient energy in a single
pulse, their higher laser efficiency, as well as smaller size and mass, makes them a promising
candidate for use in space, where the available power is a constraint. We have assessed
potential modes of operation for a diode laser that would result in the same ground-finding
accuracy as a solid-state laser. In particular, our target was set at a beam sensitivity of 98%,
i.e., we require a 90% chance of detecting the ground through 98% canopy cover. With
currently demonstrated technology, the achievable swath width is 553 m for a solid-state
laser with full-waveform detector (such as GEDI), 5898 m for a solid-state laser with photon-
counting detector (a higher energy ICESat-2), 13,085 m for a diode laser in pulse train mode
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and 132 m for a diode laser in PCL mode. These swath width estimates are based on the
total number of lasers that could be supported by a payload power of 240 W.

From these results, we can formulate the following main conclusions:

(a) A solid-state laser with photon-counting detector still requires the lowest detectable
energy overall.

(b) Based on energy and power requirements alone, a diode laser with a pulse train
configuration can provide a two times wider coverage than a solid-state laser with
a swath width of 13,085 m, while at the same time requiring less than 0.1% of the
peak power.

(c) Compared to a pulse train, PCL requires significantly larger photon numbers to
achieve the same beam sensitivity due to the cross-correlation artifacts introduced
by a discrete photon counting return signal. It is therefore probably not the optimum
configuration for a diode laser lidar.

(d) The anticipated system cost for global coverage in 5 years can potentially be reduced
when using a diode laser compared to a solid-state laser, as the same coverage may
be achieved with a smaller satellite.

The achievable swath width for the diode laser is so much higher than for the solid-
state laser because of the combined benefits of a two times higher laser efficiency and a two
times higher detector efficiency, despite a requirement to detect 115 rather than 60 photons.
As discussed, the actual swath width in a practical system may be subject to additional
constraints that are independent of the type of laser source.

Future work to improve the signal processing for Pulse Compressed Lidar on photon-
counting detectors may result in the reduction of cross-correlation artifacts through opti-
mizing the pulse shape and noise suppression algorithms, which in turn would reduce the
energy requirements for this modality. Meanwhile, the power requirement for a diode laser
in pulse train is low enough to be achievable with presently available technology.

In conclusion, considering the technological advancements in diode laser power and
laser and detector efficiency, diode lasers are becoming a feasible option in spaceborne
instruments. The smaller size and mass of diode lasers makes them a promising choice for
future satellites, and we see a clear opportunity for diode-laser-based satellite lidars.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC analog-to-digital converter
ALS Airborne Laser Scanning
CW Continuous Wave
FWHM full-width half maximum
MLS maximum length sequence
PCL Pulse Compressed Lidar
PDE photon detection efficiency
SiPM silicon photomultiplier
SNR signal-to-noise ratio
SPAD single photon avalanche diode
TEC thermo-electric cooling
TRL technology readiness level

Appendix A. Calculating Average and Peak Power

As Eshot must be emitted within the dwell time Tdwell, we can calculate the average
power Pavg as

Pavg =
1

Tdwell

∫ Tdwell

t=0
P(t)dt =

Eshot
Tdwell

(A1)

The relationship between the average power and the peak power depends on the
pulse shape and the number of pulse repetitions. For Gaussian pulses, it is related to the
pulse width as measured by the standard deviation σpulse or the FWHM. These are linked
by FWHM = 2

√
2 log 2σpulse. Therefore, for a pulse with FWHM = 15.6 ns, σpulse ≈ 6.6 ns.

∫ Tdwell

t=0
P(t)dt =

√
2πNrepσpulsePpeak (A2)

For chirps, the pulse is more spread out, resulting in a lower peak power for the same
average power. ∫ Tdwell

t=0
P(t)dt ≈ 0.63NrepTsweepPpeak (A3)

where Tsweep is the chirp sweep duration (for a 100 m chirp, Tsweep ≈ 333 ns).
The ratio of average and peak power is therefore

Pavg/Ppeak ≈
Nrep

Tdwell
×


2.51σpulse for Gaussian pulses

0.63Tsweep for a chirp.
(A4)

Appendix B. Beam Sensitivity Benchmark

The beam sensitivity can be extracted empirically from simulation data by fitting an
exponential curve of the form

y = a + eb(x−c) (A5)

to a scatter plot of the ground error vs. canopy cover. This function was chosen as it can
adequately model a relatively constant error followed by a steep increase at higher canopy
covers. The beam sensitivity can then be calculated from the fit parameters a, b, and c by
setting a ground error threshold ythresh:

bs = c +
1
b

log(ythresh − a) (A6)
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The error threshold for the ground detection is determined by calibrating the extracted
beam sensitivity against benchmark simulations with known beam sensitivity, ranging
from 70% to 99%.

Figure A1 shows the resulting curves of empirically extracted vs. simulated (bench-
mark) beam sensitivity for different thresholds (between 2 and 7 m).
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Figure A1. This figure shows the extracted beam sensitivity for a series of benchmark datasets with
known sensitivity, for different error thresholds. The black dashed identity line is the target to reach.

While a threshold of 5 m gives results closest to the benchmark for the largest range
of sensitivities, a 4 m threshold is certain to underestimate the beam sensitivity for values
above 80% and is closest to the benchmark above 95%. We therefore use a 4 m threshold.
The extracted beam sensitivity appears to reach a plateau for benchmark sensitivities below
approximately 80%. This is not a concern, however, as our target sensitivity is above 90%.

For the beam sensitivity estimates using this method to be reliable, the canopy cover
distribution must be near-uniform as a skewed distribution may introduce a bias in the
curve fit (which was calibrated with respect to a uniform distribution). While none of the
sites have a uniform distribution of canopy covers in the available footprints, the stratified
sampling described in Section 3.2 allowed for uniform sampling distributions in all sites
except for Robson Creek. The beam sensitivities cited for Robson Creek using this method
may therefore show a positive bias and should not be relied upon.
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