498 research outputs found
In Vivo Methods for the Assessment of Topical Drug Bioavailability
This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also describe
Targeted nanoparticles towards increased L cell stimulation as a strategy to improve oral peptide delivery in incretin-based diabetes treatment
The delivery of therapeutic peptides via the oral route remains one of biggest challenges in the pharmaceutical industry. Recently, we have described an alternative improved drug delivery system for peptide delivery via the oral route, consisting of a lipidic nanocapsule. Despite the striking effects observed, it is still essential to develop strategies to strengthen the nanocarriers' glucagon-like peptide-1 (GLP-1) secretory effect of the nanocarrier and/or prolong its antidiabetic effect in vivo to facilitate its translation into the clinic. For this purpose, we developed and compared different fatty acid-targeted lipid and polymeric nanoparticles and evaluated the L cell stimulation induced by the nanocarriers in murine L cells in vitro and in normal healthy mice in vivo. We further examined the antidiabetic effect in vivo in an obese/diabetic mouse model induced by high-fat diet feeding and examined the effect of the oral administration frequency. Among the tested nanocarriers, only lipid-based nanocarriers that were surface-modified with DSPE-PEG(2000) on the surface were able to significantly strengthen the biological effect of the nanocarriers. They increased endogenous GLP-1 levels up to 8-fold in vivo in normo-glycemic mice. Moreover, they effectively prolonged the in vivo antidiabetic effect by normalizing the plasma glucose levels in obese/diabetic mice following long-term treatment (one month). Ultimately, the targeted nanocarriers were as effective when the administration frequency was reduced from once daily to once every other day
Oncolytic adenovirus drives specific immune response generated by a poly-epitope pDNA vaccine encoding melanoma neoantigens into the tumor site
Abstract
Background
DNA vaccines against cancer held great promises due to the generation of a specific and long-lasting immune response. However, when used as a single therapy, they are not able to drive the generated immune response into the tumor, because of the immunosuppressive microenvironment, thus limiting their use in humans. To enhance DNA vaccine efficacy, we combined a new poly-epitope DNA vaccine encoding melanoma tumor associated antigens and B16F1-specific neoantigens with an oncolytic virus administered intratumorally.
Methods
Genomic analysis were performed to find specific mutations in B16F1 melanoma cells. The antigen gene sequences were designed according to these mutations prior to the insertion in the plasmid vector. Mice were injected with B16F1 tumor cells (n = 7–9) and therapeutically vaccinated 2, 9 and 16 days after the tumor injection. The virus was administered intratumorally at day 10, 12 and 14. Immune cell infiltration analysis and cytokine production were performed by flow cytometry, PCR and ELISPOT in the tumor site and in the spleen of animals, 17 days after the tumor injection.
Results
The combination of DNA vaccine and oncolytic virus significantly increased the immune activity into the tumor. In particular, the local intratumoral viral therapy increased the NK infiltration, thus increasing the production of different cytokines, chemokines and enzymes involved in the adaptive immune system recruitment and cytotoxic activity. On the other side, the DNA vaccine generated antigen-specific T cells in the spleen, which migrated into the tumor when recalled by the local viral therapy. The complementarity between these strategies explains the dramatic tumor regression observed only in the combination group compared to all the other control groups.
Conclusions
This study explores the immunological mechanism of the combination between an oncolytic adenovirus and a DNA vaccine against melanoma. It demonstrates that the use of a rational combination therapy involving DNA vaccination could overcome its poor immunogenicity. In this way, it will be possible to exploit the great potential of DNA vaccination, thus allowing a larger use in the clinic
Oncolytic adenovirus drives specific immune response generated by a poly-epitope pDNA vaccine encoding melanoma neoantigens into the tumor site
Background: DNA vaccines against cancer held great promises due to the generation of a specific and long lasting immune response. However, when used as a single therapy, they are not able to drive the generated immune response into the tumor, because of the immunosuppressive microenvironment, thus limiting their use in humans. To enhance DNA vaccine efficacy, we combined a new poly-epitope DNA vaccine encoding melanoma tumor associated antigens and B16F1-specific neoantigens with an oncolytic virus administered intratumorally. Methods: Genomic analysis were performed to find specific mutations in B16F1 melanoma cells. The antigen gene sequences were designed according to these mutations prior to the insertion in the plasmid vector. Mice were injected with B16F1 tumor cells (n = 7-9) and therapeutically vaccinated 2, 9 and 16 days after the tumor injection. The virus was administered intratumorally at day 10, 12 and 14. Immune cell infiltration analysis and cytokine production were performed by flow cytometry, PCR and ELISPOT in the tumor site and in the spleen of animals, 17 days after the tumor injection. Results: The combination of DNA vaccine and oncolytic virus significantly increased the immune activity into the tumor. In particular, the local intratumoral viral therapy increased the NK infiltration, thus increasing the production of different cytokines, chemokines and enzymes involved in the adaptive immune system recruitment and cytotoxic activity. On the other side, the DNA vaccine generated antigen-specific T cells in the spleen, which migrated into the tumor when recalled by the local viral therapy. The complementarity between these strategies explains the dramatic tumor regression observed only in the combination group compared to all the other control groups. Conclusions: This study explores the immunological mechanism of the combination between an oncolytic adenovirus and a DNA vaccine against melanoma. It demonstrates that the use of a rational combination therapy involving DNA vaccination could overcome its poor immunogenicity. In this way, it will be possible to exploit the great potential of DNA vaccination, thus allowing a larger use in the clinic.Peer reviewe
Stimuli‐Responsive Multifunctional Nanomedicine for Enhanced Glioblastoma Chemotherapy Augments Multistage Blood‐to‐Brain Trafficking and Tumor Targeting
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis‐driven stimuli‐responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood‐brain barrier (BBB) trafficking and lack of GBM targeting—two major hurdles for anti‐GBM therapies. NPs are dual‐surface tailored with a i) brain‐targeted acid‐responsive Angiopep‐2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L‐Histidine moiety that provides NP preferential accumulation into GBM cells post‐BBB crossing. In tumor invasive margin patient cells, the stimuli‐responsive multifunctional NPs target GBM cells, enhance cell uptake by 12‐fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long‐term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli‐responsive multifunctional NPs as an effective anti‐GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment
In Vivo Methods for the Assessment of Topical Drug Bioavailability
This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described
Administration de médicaments et de gènes par électrotransfert.
The use of a low intensity current (iontophoresis) and high voltage pulses (electroporation which permeabilizes lipid bilayers) has a potential for the administration of conventional and biotechnology-produced drugs. Iontophoresis and electroporation enhance transdermal delivery of drugs, including peptides and oligonucleotides. Electrochemotherapy, i.e., combination of a systemic or local delivery of a non-permeant cytostatic drug with electroporation, kills locally tumor cells. Recently, it has been shown that the local injection of a plasmid before electroporation increases significantly gene transfection. Hence, electrotransfer is a promising alternative for drug and gene delivery
- …